Skip to main content
Log in

Quantum Gravitational Effects on the Boundary

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Y. Park, “Quantum ‘violation’ of Dirichlet boundary condition,” Phys. Lett. B, 765, 260–264 (2017) arXiv:1609.06251v3 [hep-th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D, 14, 2460–2473 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  3. D. N. Page, “Black hole information,” in: Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics (Waterloo, Ontario, 13–15 May 1993, R. B. Mann and R. G. McLenaghan, eds.), World Scientific, Singapore, pp. 1–41; arXiv:hep-th/9305040v5 (1993).

    Google Scholar 

  4. S. D. Mathur, “The fuzzball proposal for black holes: An elementary review,” Fortschr. Phys., 53, 793–827 (2005) arXiv:hep-th/0502050v1 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Polchinski, “The black hole information problem,” in: New Frontiers in Fields and Strings (Boulder, Colorado, 1–26 June 2015, J. Polchinski, P. Vieira, and O. DeWolfe, eds.), World Scientific, Singapore (2017), pp. 353–397; arXiv:1609.04036v1 [hep-th] (2016).

    Google Scholar 

  6. I. Y. Park, “Fundamental versus solitonic description of D3 branes,” Phys. Lett. B, 468, 213–218 (1999) arXiv:hep-th/9907142v4 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. I. Y. Park, “Strong coupling limit of open strings: Born–Infeld analysis,” Phys. Rev. D, 64, 081901 (2001) arXiv:hep-th/0106078v3 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Niarchos, “Open/closed string duality and relativistic fluids,” Phys. Rev. D, 94, 026009 (2016) arXiv: 1510.03438v2 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Grignani, T. Harmark, A. Marini, and M. Orselli, “The Born–Infeld/gravity correspondence,” Phys. Rev. D, 94, 066009 (2016) arXiv:1602.01640v3 [hep-th] (y2016).

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Maxfield and S. Sethi, “DBI from gravity,” JHEP, 1702, 108 (2017) arXiv:1612.00427v2 [hep-th] (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Sato and A. Tsuchiya, “Born–Infeld action from supergravity,” Progr. Theor. Phys., 109, 687–707 (2003) arXiv:hep-th/0211074v5 (2002).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. E. Hatefi, A. J. Nurmagambetov, and I. Y. Park, “ADM reduction of IIB on Hp,q and dS braneworld,” JHEP, 1304, 170 (2013) arXiv:1210.3825v4 [hep-th] (2012).

    Article  ADS  MATH  Google Scholar 

  13. I. Y. Park, “Hypersurface foliation approach to renormalization of ADM formulation of gravity,” Eur. Phys. J. C, 75, 459 (2015) arXiv:1404.5066v6 [hep-th] (2014).

    Article  ADS  Google Scholar 

  14. I. Y. Park, “Quantization of gravity through hypersurface foliation,” arXiv:1406.0753v1 [gr-qc] (2014).

    Google Scholar 

  15. I. Y. Park, “Reduction of gravity–matter and dS gravity to hypersurface,” Internat. J. Geom. Methods Modern Phys., 14, 1750092 (2017) arXiv:1512.08060v3 [hep-th] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Benguria, P. Cordero, and C. Teitelboim, “Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry,” Nucl. Phys. B, 122, 61–99 (1977).

    Article  ADS  Google Scholar 

  17. E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys., 121, 351–399 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. P. Balachandran, G. Bimonte, K. S. Gupta, and A. Stern, “Conformal edge currents in Chern–Simons theories,” Internat. J. Modern Phys. A, 7, 4655–4670 (1992) arXiv:hep-th/9110072v1 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Smolin, “Linking topological quantum field theory and nonperturbative quantum gravity,” J. Math. Phys., 36, 6417–6455 (1995) arXiv:gr-qc/9505028v2 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. C. Krishnan and A. Raju, “A Neumann boundary term for gravity,” Modern Phys. Lett. A, 32, 1750077 (2017) arXiv:1605.01603v4 [hep-th] (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. C. Krishnan, K. V. P. Kumar, and A. Raju, “An alternate path integral for quantum gravity,” JHEP, 1610, 043 (2016) arXiv:1609.04719v3 [hep-th] (2016)

    Article  ADS  Google Scholar 

  22. C. Krishnan, A. Raju, and P. N. B. Subramanian, “Dynamical boundary for anti-de Sitter space,” Phys. Rev. D, 94, 126011 (2016) arXiv:1609.06300v2 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Lehner, R. C. Myers, E. Poisson, and R. D. Sorkin, “Gravitational action with null boundaries,” Phys. Rev. D, 94, 084046 (2016) arXiv:1609.00207v1 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Freidel, A. Perez, and D. Pranzetti, “Loop gravity string,” Phys. Rev. D, 95, 106002 (2017) arXiv: 1611.03668v1 [gr-qc] (2016).

    Article  ADS  Google Scholar 

  25. W. Donnelly and L. Freidel, “Local subsystems in gauge theory and gravity,” JHEP, 1609, 102 (2016) arXiv: 1601.04744v2 [hep-th] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  26. K. Murata, S. Kinoshita, and N. Tanahashi, “Non-equilibrium condensation process in a holographic superconductor,” JHEP, 1007, 050 (2010) arXiv:1005.0633v1 [hep-th] (2010).

    Article  ADS  MATH  Google Scholar 

  27. S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D, 78, 065034 (2008) arXiv:0801.2977v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  28. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a holographic superconductor,” Phys. Rev. Lett., 101, 031601 (2008) arXiv:0803.3295v1 [hep-th] (2008).

    Article  ADS  Google Scholar 

  29. M. J. Bhaseen, J. P. Gauntlett, B. D. Simons, J. Sonner, and T. Wiseman, “Holographic superfluids and the dynamics of symmetry breaking,” Phys. Rev. Lett., 110, 015301 (2013) arXiv:1207.4194v2 [hep-th] (2012).

    Article  ADS  Google Scholar 

  30. I. Antoniadis, J. Iliopoulos, and T. N. Tomaras, “One loop effective action around de Sitter space,” Nucl. Phys. B, 462, 437–452 (1996) arXiv:hep-th/9510112v1 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. I. Y. Park, “4D covariance of holographic quantization of Einstein gravity,” arXiv:1506.08383v3 [hep-th] (2015).

    Google Scholar 

  32. C. P. Burgess and C. A. Lütken, “Propagators and effective potentials in anti-de Sitter space,” Phys. Lett. B, 153, 137–141 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Inami and H. Ooguri, “One loop effective potential in Anti-de Sitter space,” Progr. Theor. Phys., 73, 1051–1054 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. E. D’Hoker and D. Z. Freedman, “Supersymmetric gauge theories and the AdS/CFT correspondence,” in: Strings, Branes, and Extra Dimensions–TASI 2001 (Boulder, Colorado, USA, 4–29 June 2001, S. S. Gubser and J. D. Lykken, eds.), World Scientific, Singapore (2004) arXiv:hep-th/0201253v2 (2002).

    Google Scholar 

  35. E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Graviton and gauge boson propagators in AdS(d+1),” Nucl. Phys. B, 562, 330–352 (1999) arXiv:hep-th/9902042v1 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. I. Y. Park, “Holographic quantization of gravity in a black hole background,” J. Math. Phys., 57, 022305 (2016) arXiv:1508.03874v2 [hep-th] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. T. Ortín, Gravity and Strings, Cambridge Univ. Press, Cambridge (2004).

    Book  Google Scholar 

  38. I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective Action in Quantum Gravity, Taylor and Francis, New York (1992).

    Google Scholar 

  39. G.W. Gibbons and S.W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D, 15, 2752–2756 (1977).

    Article  ADS  Google Scholar 

  40. N. Deruelle, M. Sasaki, Y. Sendouda, and D. Yamauchi, “Hamiltonian formulation of f (Riemann) theories of gravity,” Progr. Theor. Phys., 123, 169–185 (2010) arXiv:0908.0679v1 [hep-th] (2009).

    Article  ADS  MATH  Google Scholar 

  41. A. Teimouri, S. Talaganis, J. Edholm, and A. Mazumdar, “Generalised boundary terms for higher derivative theories of gravity,” JHEP, 1608, 144 (2016) arXiv:1606.01911v2 [gr-qc] (2016).

    Article  ADS  MathSciNet  Google Scholar 

  42. I. Y. Park and F. James, “On the pattern of black hole information release,” Internat. J. Modern Phys. A, 29, 1450047 (2014) arXiv:1301.6320v5 [hep-th] (2013).

    Article  ADS  MATH  Google Scholar 

  43. A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black holes: Complementarity or firewalls?” JHEP, 1302, 062 (2013) arXiv:1207.3123v4 [hep-th] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S. L. Braunstein, S. Pirandola, and K. Zyczkowski, “Better late than never: Information retrieval from black holes,” Phys. Rev. Lett., 110, 101301 (2013) arXiv:0907.1190v3 [quant-ph] (2009).

    Article  ADS  Google Scholar 

  45. S. L. Braunstein and S. Pirandola, “Post-firewall paradoxes,” arXiv:1411.7195v2 [quant-ph] (2014).

    Google Scholar 

  46. I. Y. Park, “Indication for unsmooth horizon induced by quantum gravity interaction,” Eur. Phys. J. C, 74, 3143 (2014) arXiv:1401.1492v4 [hep-th] (2014).

    Article  ADS  Google Scholar 

  47. I. Y. Park, “Dimensional reduction to hypersurface of foliation,” Fortschr. Phys., 62, 966–974 (2014) arXiv: 1310.2507v3 [hep-th] (2013).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. B. Giddings, “The boundary S matrix and the AdS to CFT dictionary,” Phys. Rev. Lett., 83, 2707–2710 (1999) arXiv:hep-th/9903048v2 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. V. Balasubramanian, S. B. Giddings, and A. E. Lawrence, “What do CFTs tell us about anti-de Sitter spacetimes?” JHEP, 9903, 001 (1999) arXiv:hep-th/9902052v2 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. D. Marolf, I. A. Morrison, and M. Srednicki, “Perturbative S-matrix for massive scalar fields in global de Sitter space,” Class. Q. Grav., 30, 155023 (2013) arXiv:1209.6039v3 [hep-th] (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Y. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, F., Park, I.Y. Quantum Gravitational Effects on the Boundary. Theor Math Phys 195, 607–627 (2018). https://doi.org/10.1134/S0040577918040128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577918040128

Keywords

Navigation