Skip to main content
Log in

Flat coordinates for Saito Frobenius manifolds and string theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the connection between the models of topological conformal theory and noncritical string theory with Saito Frobenius manifolds. For this, we propose a new direct way to calculate the flat coordinates using the integral representation for solutions of the Gauss–Manin system connected with a given Saito Frobenius manifold. We present explicit calculations in the case of a singularity of type A n . We also discuss a possible generalization of our proposed approach to SU(N) k /(SU(N) k+1 × U(1)) Kazama–Suzuki theories. We prove a theorem that the potential connected with these models is an isolated singularity, which is a condition for the Frobenius manifold structure to emerge on its deformation manifold. This fact allows using the Dijkgraaf–Verlinde–Verlinde approach to solve similar Kazama–Suzuki models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gepner, Nucl. Phys. B, 296, 757–778 (1988).

    Article  ADS  Google Scholar 

  2. T. Banks, L. J. Dixon, D. Friedan, and E. J. Martinec, Nucl. Phys. B, 299, 613–626 (1988).

    Article  ADS  Google Scholar 

  3. A. Belavin and L. Spodyneiko, “N=2 superconformal algebra in NSR string and Gepner approach to space–time supersymmetry in ten dimensions,” arXiv:1507.01911v1 [hep-th] (2015).

    MATH  Google Scholar 

  4. T. Eguchi and S. Yang, Modern Phys. Lett. A, 5, 1693–1701 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Kazama and H. Suzuki, Nucl. Phys. B, 321, 232–268 (1989).

    Article  ADS  Google Scholar 

  6. V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Maps [in Russian], Vol. 2, Monodromy and Asymptotic Integrals, Nauka, Moscow (1984); English transl.: V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko (Monogr. Math., Vol. 83), Birkhäuser, Boston (1988).

    MATH  Google Scholar 

  7. B. Blok and A. Varchenko, Internat. J. Mod. Phys. A, 7, 1467–1490 (1992).

    Article  ADS  Google Scholar 

  8. E. J. Martinec, Phys. Lett. B, 217, 431–437 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Vafa and N. Warner, Phys. Lett. B, 218, 51–58 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  10. W. Lerche, C. Vafa, and N. Warner, Nucl. Phys. B, 324, 427–474 (1989).

    Article  ADS  Google Scholar 

  11. D. Gepner, Nucl. Phys. B, 296, 757–778 (1998).

    Article  ADS  Google Scholar 

  12. R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, Nucl. Phys. B, 352, 59–86 (1991).

    Article  ADS  Google Scholar 

  13. B. Dubrovin, Nucl. Phys. B, 379, 627–689 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. M. Polyakov, Phys. Lett. B, 103, 207–210 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, Modern Phys. Lett. A, 3, 819–826 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. A. Belavin and A. B. Zamolodchikov, J. Phys. A: Math. Theor., 42, 304004 (2009).

    Article  Google Scholar 

  17. A. Belavin, B. Dubrovin, and B. Mukhametzhanov, JHEP, 1401, 156 (2014).

    Article  ADS  Google Scholar 

  18. V. Belavin, JHEP, 1407, 129 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Belavin and V. Belavin, JHEP, 1409, 151 (2014).

    Article  ADS  Google Scholar 

  20. A. Belavin and V. Belavin, Moscow Math. J., 15, 269–282 (2015).

    MathSciNet  Google Scholar 

  21. V. Belavin and Yu. Rud, J. Phys. A: Math. Theor., 48, 18FT01 (2015); arXiv:1502.05575v1 [hep-th] (2015).

    Article  Google Scholar 

  22. A. A. Belavin, G. M. Tarnopolsky, JETP Letters, 92, 257–267 (2010).

    Article  ADS  Google Scholar 

  23. L. Spodyneiko, J. Phys. A: Math. Theor., 48, 065401 (2015); arXiv:1407.3546v1 [hep-th] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. R. Douglas, Phys. Lett. B, 238, 176–180 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Ginsparg, M. Goulian, M. R. Plesser, and J. Zinn-Justin, Nucl. Phys. B, 342, 539–563 (1990).

    Article  ADS  Google Scholar 

  26. A. A. Belavin and Al. B. Zamolodchikov, Theor. Math. Phys., 147, 729–754 (2006).

    Article  Google Scholar 

  27. Al. Zamolodchikov, “On the three-point function in minimal Liouville gravity,” arXiv:hep-th/0505063v1 (2005).

    MATH  Google Scholar 

  28. K. Saito, Publ. Res. Inst. Math. Sci., 19, 1231–1264 (1983).

    Article  MathSciNet  Google Scholar 

  29. M. Noumi, Tokyo J. Math., 7, 1–60 (1984).

    Article  Google Scholar 

  30. C. Li, S. Li, K. Saito, and Y. Shen, “Mirror symmetry for exceptional unimodular singularities,” arXiv: 1405.4530v2 [math.AG] (2014).

    Google Scholar 

  31. C. Li, S. Li, and K. Saito, “Primitive forms via polyvector fields,” arXiv:1311.1659v3 [math.AG] (2013).

    Google Scholar 

  32. G. Tarnopolsky, J. Phys. A: Math. Theor., 44, 325401 (2011).

    Article  Google Scholar 

  33. D. Gepner, Commun. Math. Phys., 141, 381–411 (1991).

    Article  ADS  Google Scholar 

  34. M. Saito, Ann. Inst. Fourier (Grenoble), 39, 27–72 (1989).

    Article  MathSciNet  Google Scholar 

  35. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. B, 241, 333–380 (1984).

    Article  ADS  Google Scholar 

  36. E. Witten, Commun. Math. Phys., 117, 353–386 (1988).

    Article  ADS  Google Scholar 

  37. I. Krichever, Commun. Math. Phys., 143, 415–429 (1992).

    Article  ADS  Google Scholar 

  38. E. Witten, “The Verlinde algebra and the cohomology of the Grassmannian,” in: Geometry, Topology, and Physics (Conf. Proc. Lect. Notes Geom. Topol., Vol. 4), International Press, Cambridge (1995), pp. 357–422; arXiv:hep-th/9312104v1 (1993).

    Google Scholar 

  39. K. Saito, Private communication (2016).

    Google Scholar 

  40. D. Gepner, Phys. Lett. B, 199, 380–388 (1987).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belavin.

Additional information

The research of A. A. Belavin was performed at the Institute for Information Transmission Problems, RAS, and supported by a grant from the Russian Science Foundation (Project No. 14-50-00150).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 3, pp. 429–445, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belavin, A.A., Gepner, D. & Kononov, Y.A. Flat coordinates for Saito Frobenius manifolds and string theory. Theor Math Phys 189, 1775–1789 (2016). https://doi.org/10.1134/S0040577916120096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916120096

Keywords

Navigation