Skip to main content
Log in

Schrödinger potentials solvable in terms of the confluent Heun functions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that if the potential is proportional to an energy-independent continuous parameter, then there exist 15 choices for the coordinate transformation that provide energy-independent potentials whose shape is independent of that parameter and for which the one-dimensional stationary Schrödinger equation is solvable in terms of the confluent Heun functions. All these potentials are also energy-independent and are determined by seven parameters. Because the confluent Heun equation is symmetric under transposition of its regular singularities, only nine of these potentials are independent. Five of the independent potentials are different generalizations of either a hypergeometric or a confluent hypergeometric classical potential, one potential as special cases includes potentials of two hypergeometric types (the Morse confluent hypergeometric and the Eckart hypergeometric potentials), and the remaining three potentials include five-parameter conditionally integrable confluent hypergeometric potentials. Not one of the confluent Heun potentials, generally speaking, can be transformed into any other by a parameter choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ronveaux, ed., Heun’s Differential Equations, Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  2. S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, New York (2000).

    MATH  Google Scholar 

  3. I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  4. E. Schrödinger, Ann. Phys., 384, 361–376 (1926).

    Article  Google Scholar 

  5. P. M. Morse, Phys. Rev., 34, 57–64 (1929).

    Article  ADS  Google Scholar 

  6. C. Eckart, Phys. Rev., 35, 1303–1309 (1930).

    Article  ADS  Google Scholar 

  7. N. Rosen and P. M. Morse, Phys. Rev., 42, 210–217 (1932).

    Article  ADS  Google Scholar 

  8. R. D. Woods and D. S. Saxon, Phys. Rev., 95, 577–578 (1954).

    Article  ADS  Google Scholar 

  9. M. F. Manning and N. Rosen, Phys. Rev., 44, 953 (1933).

    Google Scholar 

  10. L. Hulthén, Ark. Mat. Astr. Fys. A, 28, No. 5, 1–12 (1942); Ark. Mat. Astr. Fys. B, 29, No. 1, 1–11 (1942).

    Google Scholar 

  11. G. Pöschl and E. Teller, Z. Phys. A, 83, 143–151 (1933).

    Article  Google Scholar 

  12. F. Scarf, Phys. Rev., 112, 1137–1140 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Kratzer, Z. Phys., 3, 289–307 (1920).

    Article  ADS  Google Scholar 

  14. J. H. Lambert, Acta Helvetica, 3, 128–168 (1758).

    Google Scholar 

  15. L. Euler, Acta Acad. Scient. Petropol., 2, 29–51 (1783).

    Google Scholar 

  16. A. K. Bose, Phys. Lett., 7, 245–246 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. A. Natanzon, Theor. Math. Phys., 38, 146–153 (1979).

    Article  MathSciNet  Google Scholar 

  18. A. Lemieux and A. K. Bose, Ann. Inst. H. Poincaré Sec. A, n.s., 10, 259–270 (1969).

    MathSciNet  Google Scholar 

  19. E. W. Leaver, J. Math. Phys., 27, 1238–1265 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. W. Williams, Phys. Lett. A, 334, 117–122 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. M. Ishkhanyan, Phys. Lett. A, 380, 640–644 (2016); arXiv:1509.00846v2 [quant-ph] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. M. Ishkhanyan, Eur. Phys. Lett., 112, 10006 (2015).

    Article  Google Scholar 

  23. M. F. Manning, Phys. Rev., 48, 161–164 (1935).

    Article  ADS  Google Scholar 

  24. L. J. El-Jaick and B. D. B. Figueiredo, J. Math. Phys., 49, 083508 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Batic, R. Williams, and M. Nowakowski, J. Phys. A: Math. Theor., 46, 245204 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. A. M. Goncharenko, V. A. Karpenko, and V. N. Mogilevich, Theor. Math. Phys., 88, 715–720 (1991).

    Article  MathSciNet  Google Scholar 

  27. A. M. Ishkhanyan and A. E. Grigoryan, J. Phys. A: Math. Theor., 47, 465205 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Quesne, J. Phys. A: Math. Theor., 41, 392001 (2008).

    Article  MathSciNet  Google Scholar 

  29. S. Odake and R. Sasaki, Phys. Lett. B, 679, 414–417 (2009); arXiv:0906.0142v2 [math-ph] (2009).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. M. Ishkhanyan, T. A. Shahverdyan, and T. A. Ishkhanyan, Eur. Phys. J. D, 69, 10 (2015); arXiv:1404.3922v2 [quant-ph] (2014).

    Article  ADS  Google Scholar 

  31. T. A. Shahverdyan, T. A. Ishkhanyan, A. E. Grigoryan, and A. M. Ishkhanyan, J. Contemp. Phys. (Armenian Acad. Sci.), 50, 211–226 (2015); arXiv:1412.1378v2 [quant-ph] (2014).

    Article  Google Scholar 

  32. G. Junker and P. Roy, Phys. Lett. A, 232, 155–161 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Lévai and P. Roy, Phys. Lett. A, 264, 117–123 (1999); arXiv:quant-ph/9909004v2 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Sinha, G. Lévai, and P. Roy, Phys. Lett. A, 322, 78–83 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Ya. Kazakov and S. Yu. Slavyanov, Theor. Math. Phys., 179, 543–549 (2014).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ishkhanyan.

Additional information

This research was performed within the scope of the International Associated Laboratory (CNRS-France & SCS-Armenia) IRMAS and was supported by the Armenian State Committee of Science (SCS Grant Nos. 13RB-052 and 15T-1C323) and the project “Leading Research Universities of Russia” (Grant No. FTI_120_2014 Tomsk Polytechnic University).

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 188, No. 1, pp. 20–35, July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the confluent Heun functions. Theor Math Phys 188, 980–993 (2016). https://doi.org/10.1134/S0040577916070023

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916070023

Keywords

Navigation