Skip to main content
Log in

History of tectonic deformation in the interior plains of the Caloris basin, mercury

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Analysis of images from the Messenger MDIS narrow angle camera imply that at least part of the radial graben of the Pantheon Fossae structure, and probably the structure as a whole, predate the deformation that led to circumferential ridges on the Caloris interior plains. This follows from structural analysis and comparison with similar geological relationships on Venus and the Moon, where graben are known to both postdate and predate ridges. Observations suggest that the Pantheon Fossae radial graben (extension) formed first, pre-dating observed circumferential graben (also extension), with ridges (compression) formed in between. This scenario puts constraints on the models for the deformation of the Caloris basin and its vicinity. Our observations and analysis are consistent with Pantheon Fossae having formed in a similar manner to Venusian astra/novae, where radial dikes that propagate away from a magmatic center led to graben formation. Our results also have implications for the length of time between the emplacement of the basin volcanic fill and the onset of the compressional stresss regime that led to ridge-formation. If the Pantheon Fossae structure formed before the emplacement of ridges, as we suggest, this means that compressional stresses took some time to develop sufficiently to deform the volcanic plains. Since the Caloris interior plains had to have been already in place when Pantheon Fossae formed, and since these plains represented a significant load to the underlying lithosphere, it is striking that compression took some time to develop. These observations may provide new information about the rigidity of the basin-filling material and will help constrain models for the mechanisms and timing of events within and around the Caloris basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aittola, M. and Kostama V.-P., Venusian Novae and Arachnoids: Characteristics, Differences and the Effect of the Geological Environment, Planet. Space Sci., 2000, vol. 48, pp. 1479–1489.

    Article  ADS  Google Scholar 

  • Aittola, M. and Kostama, V.-P., Chronology of the Formation Process of Venusian Novae and the Associated Coronae, J. Geophys. Res., 2002, vol. 107, doi: 10.1029/2001JE001528.

  • Aittola, M. and Raitala, J., Venusian Novae: Classification and Associations to Volcano-Tectonic Structures, Solar Syst. Res., 2007, vol. 41, pp. 395–412.

    Article  ADS  Google Scholar 

  • Basilevsky, A.T., Aittola, M., Raitala, J., and Head, J.W., Venus Astra/Novae: Estimates of the Absolute Time Duration of Their Activity, Icarus, 2000, vol. 203, pp. 337–351.

    Article  ADS  Google Scholar 

  • Basilevsky, A.T. and Raitala, J., Morphology of Selected Novae (Astra) from the Analysis of Magellan Images at Venus, Planet. Space Sci., 2002, vol. 50, pp. 21–39.

    Article  ADS  Google Scholar 

  • Cintala, M.J. and Grieve, R.A.F., Scaling Impact Melting and Crater Dimensions: Implications for the Lunar Cratering Record, Meteorit. Planet. Sci., 1998, vol. 33, pp. 889–912.

    Article  ADS  Google Scholar 

  • Crumpler, L.S. and Aubele, J.C., Volcanism on Venus, Encyclopedia of Volcanoes, Sigurdsaon, H., Ed., San Diego/London: Academic Press, 2000, pp. 727–769.

    Google Scholar 

  • Dzurisin, D., The Tectonic and Volcanic History of Mercury as Inferred from Studies of Scarps, Ridges, Troughs, and Other Lineaments, J. Geophys. Res., 1978, vol. 83, pp. 4883–4906.

    Article  ADS  Google Scholar 

  • Elkins-Tanton, L.T. and Hager, B.H., Giant Meteoroid Impacts can Cause Volcanism, Earth Planet. Sci. Lett., 2005, vol. 239, pp. 219–232.

    Article  ADS  Google Scholar 

  • Ernst, R.E., Grosfils, E.B., and Mege, D., Giant Dike Swarms: Earth, Venus, and Mars, Ann. Rev. Earth Planet. Sci., 2001, vol. 29, pp. 489–534.

    Article  ADS  Google Scholar 

  • Fassett C.I. and Head, J.W., The Timing of Martian Valley Network Activity: Constraints from Buffered Crater Counting, Icarus, 2008, vol. 195, pp. 61–89.

    Article  ADS  Google Scholar 

  • Fassett, C.I., Head, J.W., Blewett, D.T., et al., Caloris Impact Basin: Exterior Geomorphology, Stratigraphy, Morphometry, Radial Sculpture, and Smooth Plains Deposits, Earth Planet. Sci. Lett., 2009, vol. 285, pp. 297–308.

    Article  ADS  Google Scholar 

  • Freed, A.M., Solomon, S.C., Watters, T.R., et al., Could Pantheon Fossae Be the Result of the Apollodorus Crater-Forming Impact within the Caloris Basin, Mercury?, Earth Planet. Sci. Lett., 2009, vol. 285, pp. 320–327.

    Article  ADS  Google Scholar 

  • Golombek, M.P., Anderson, F.S., and Zuber, M.T., Martian Wrinkle Ridge Topography: Evidence for Subsurface Faults from MOLA, J. Geophys. Res., 2001, vol. 106, pp. 23, 811–23, 821.

    Article  Google Scholar 

  • Head, J.W. and Wilson, L., Magma Reservoirs and Neutral Buoyancy Zones on Venus: Implications for the Formation and Evolution of Volcanic Landforms, J. Geophys. Res., 1992, vol. 97, pp. 3877–3903.

    Article  ADS  Google Scholar 

  • Head, J.W., Murchie, S.L., Prockter, L.M., et al., Volcanism on Mercury: Evidence from the First MESSENGER Flyby, Science, 2008, vol. 321, pp. 69–72.

    Article  ADS  Google Scholar 

  • Head, J.W., Murchie, S.L., Prockter, L.M., et al., Evidence for Intrusive Activity on Mercury from the First MESSENGER Flyby, Earth Planet. Sci. Lett., 2009a, vol. 285, pp. 251–262.

    Article  ADS  Google Scholar 

  • Head, J.W., Murchie, S.L., Prockter, L.M., et al., Volcanism on Mercury: Evidence from the First MESSENGER Flyby for Extrusive and Explosive Activity and the Volcanic Origin of Plains, Earth Planet. Sci. Lett., 2009b, vol. 285, pp. 227–242.

    Article  ADS  Google Scholar 

  • Ivanov, B.A., Melosh, H.J., and Pierazzo, E., Basin-Forming Impacts: Reconnaissance Modeling, Geol. Soc. Amer. Special Paper 465: Large Meteorite Impacts and Planetary Evolution IV, Reimold, W.U. and Gibson, R.L., Ed., 2010, pp. 29–49.

  • Janes, D.M., Squyres, S.W., Bindschadler, D.L., et al., Geophysical Models for the Formation and Evolution of Coronae on Venus, J. Geophys. Res., 1992, vol. 97, pp. 16055–16067.

    Article  ADS  Google Scholar 

  • Kennedy, P.J., Freed, A.M., and Solomon, S.C., Mechanisms of Faulting in and Around Caloris Basin, Mercury, J. Geophys. Res., 2008, vol. 113, p. E08004, doi: 10.1029/2007JE002992.

    Article  Google Scholar 

  • Klimczak, C., Schultz, R.A., and Nahm, A.L., Evaluation of the Origin Hypotheses of Pantheon Fossae, Central Caloris Basin, Mercury, Icarus, 2010, vol. 209, pp. 262–270.

    Article  ADS  Google Scholar 

  • Krassilnikov, A.S. and Head, J.W., Novae on Venus: Geology, Classification and Evolution, J. Geophys. Res., 2003, vol. 108, pp. 12-1–12-48.

    Article  Google Scholar 

  • Kulander, B.R., Barton, C.C., and Dean, S.L., The Application of Fractography to Core and Outcrop Fracture Investigations, U.S. Dept. Energy, METC/SP-79/3, Springfield, VA: U.S. Dept. of Commerce, National Tech. Inf. Service, 1979.

    Google Scholar 

  • Lachenbruch, A.H., Mechanics of Thermal Contraction Cracks and Ice-Wedge Polygons in Permafrost, Geol. Soc. Amer. Spec. Paper 70, 1962, p. 69.

  • McGill, G.E., Wrinkle Ridges, Stress Domains, and Kinematics of Venusian Plains, Geophys. Res. Lett., 1993, vol. 20, pp. 2407–2410.

    Article  ADS  Google Scholar 

  • Melosh, H.J. and McKinnon, W.B., The Tectonics of Mercury, Mercury, Vilas, F., Chapman, C.R., Matthews, M.S., Ed., Tucson: Univ. Arizona Press, 1988, pp. 374–400.

    Google Scholar 

  • Murchie, S.L., Watters, T.R., Robinson, M.S., et al., Geology of the Caloris Basin, Mercury: A New View from MESSENGER, Science, 2008, vol. 321, pp. 73–76.

    Article  ADS  Google Scholar 

  • Neukum, G., Oberst, J., Hoffmann, H., et al., Geologic Evolution and Cratering History of Mercury, Planet. Space Sci., 2001, vol. 49, pp. 1507–1521.

    Article  ADS  Google Scholar 

  • Oberst, J., Preusker, F., Phillips, R.J., et al., The Morphology of Mercury’s Caloris Basin as Seen in MESSENGER Stereo Topographic Models, Icarus, 2010, vol. 209, pp. 230–238.

    Article  ADS  Google Scholar 

  • Oshigami, S. and Namiki, N., Cross-Sectional Profiles of Baltis Vallis Channel on Venus: Reconstructions from Magellan SAR Brightness Data, Icarus, 2007, vol. 190, pp. 1–14.

    Article  ADS  Google Scholar 

  • Plescia, J.B. and Golombek, M.P., Origin of Planetary Wrinkle Ridges Based on the Study of Terrestrial Analogs, Geol. Soc. Am. Bull., 1986, vol. 97, pp. 1289–1299.

    Article  Google Scholar 

  • Prockter, L.M., Ernst, C.M., Denevi, B.W., et al., Evidence for Young Volcanism on Mercury from the Third MESSENGER Flyby, Science Express, 2010, doi: 10.1126/science.1188186.

  • Schubert, G.D., Bindshadler, D., Janes, D.M., et al., Magellan Observations of Venusian Coronae: Geology, Topography and Distribution, EOS Trans. AGU 72, 1991, p. 175.

  • Schultz, R.A., Okubo, C.H., Goudy, C.L., and Wilkins, S.J., Igneous Dikes on Mars Revealed by Mars Orbiter Laser Altimeter Topography, Geology, 2004, vol. 32, pp. 889–892.

    Article  ADS  Google Scholar 

  • Spudis, P.D. and Guest, J.E., Stratigraphy and Geologic History of Mercury, in Mercury, Vilas, F., Chapman, C.R., and Matthews, M.S., Ed., Tucson, Ariz.: University of Arizona Press, 1988, pp. 118–164.

    Google Scholar 

  • Squyres, S.W., Janes, D.M., Baer, G., et al., The Morphology and Evolution of Coronae on Venus, J. Geophys. Res., 1992, vol. 94, pp. 13611–13634.

    Article  ADS  Google Scholar 

  • Solomon, S.C., McNutt, R.L., Watters, T.R., et al., Return to Mercury: A global Perspective on Messenger’s First Mercury Flyby, Science, 2008, vol. 321, pp. 59–62.

    Article  ADS  Google Scholar 

  • Stofan, E.R., Bindschadler, D.L., Head, J.W., Parmentier, E.M. Corona Structures on Venus: Models of Origin, J. Geophys. Res., 1991, vol. 96, pp. 20933–20946.

    Article  ADS  Google Scholar 

  • Strom, R.G., Trask, N.J., and Guest, J.E., Tectonism and Volcanism on Mercury, J. Geophys. Res., 1975, vol. 80, pp. 2478–2507.

    Article  ADS  Google Scholar 

  • Strom, R., Mercury, in Encyclopedia of the Solar System, Wessman, P.R., McFadden, L.-A., Johnson, T.V., Eds., Academic Press, 1999, pp. 123–145.

  • van der Pluijm, B.A. and Marshak, S., Earth Structure: An Indroduction to Structural Geology and Tectonics, New York: W.W. Norton and Company, 2004, p. 656.

    Google Scholar 

  • Watters, T.R., Wrinkle Ridge Assemblages on the Terrestrial Planets, J. Geophys. Res., 1988, vol. 93, pp. 10236–10254.

    Article  ADS  Google Scholar 

  • Watters, T.R., Nimmo, F., and Robinson, M.S., Extensional Troughs in the Caloris Basin of Mercury: Evidence of Lateral Crustal Flow, Geology, 2005, vol. 33, pp. 669–672.

    Article  ADS  Google Scholar 

  • Watters, T.R. and Nimmo, F., The Tectonics of Mercury, in Planetary Tectonics, Watters, T.R., Schultz, R.A., Eds., Cambridge Univ. Press, 2009, pp. 15–80.

  • Watters, T.R., Murchie, S.L., Robinson, M.S., et al., Emplacement and Tectonic Deformation of Smooth Plains in the Caloris Basin, Mercury, Earth Planet. Sci. Lett., 2009a, vol. 285, pp. 309–319.

    Article  ADS  Google Scholar 

  • Watters, T.R., Solomon, S.C., Robinson, M.S., et al., The Tectonics of Mercury: The View after MESSENGER’s First Flyby, Earth Planet. Sci. Lett., 2009b, vol. 285, pp. 283–296, doi: 10.1016/j.epsl.2009.01.025.

    Article  ADS  Google Scholar 

  • Watters, T.R., Head, J.W., Solomon, S.C., et al., Evolution of the Rembrandt Impact Basin on Mercury, Science, 2009c, vol. 324, pp. 618–621, doi: 10.1126/science.1172109.

    ADS  Google Scholar 

  • Wilhelms, D.E., The Geologic History of the Moon, U.S. Geol. Surv. Prof. Pap. 1348, 1987, p. 302.

  • Wilson, L. and Head J.W., Tharsis-Radial Graben Systems as the Surface Manifestation of Plume-Related Dike Intrusion Complexes: Models and Implications, J. Geophys. Res., 2002, vol. 107, 5057, doi: 10.1029/2001JE001593.

    Article  Google Scholar 

  • Wolfe, E.W., Bailey, N.G., Lucchitta, B., et al., The Geologic Investigation of the Taurus-Littrow Valley: Apollo 17 Landing Site, U.S. Geol. Surv. Prof. Pap. 1080, Washington, D.C., 1981, p. 280.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.T. Basilevsky, J.W. Head, C.I. Fassett, G. Michael, 2011, published in Astronomicheskii Vestnik, 2011, Vol. 45, No. 6, pp. 483–511.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basilevsky, A.T., Head, J.W., Fassett, C.I. et al. History of tectonic deformation in the interior plains of the Caloris basin, mercury. Sol Syst Res 45, 471–497 (2011). https://doi.org/10.1134/S0038094611060025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094611060025

Keywords

Navigation