Skip to main content
Log in

Prediction of a Crack Growth Trajectory with Allowance for the Angular Distribution of the Small Components of the Tangential Stresses at a Crack Tip

  • DEFORMATION AND FRACTURE MECHANICS
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—To determine a crack growth direction, we propose to take into account constant T-stresses and the higher-order terms in the expansion of the stress field at a crack tip by representing them as a function of the angular distribution of T-stresses. A modified criterion is suggested for determining a crack growth direction using the maximum tangential stresses with allowance for the angular distribution of T-stresses at a crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. M. Bol’shakov and L. N. Tatarinov, “Reliability of gas main after operation for 30 years under extreme north conditions,” Gazov. Prom., No. 2, 28–31 (2009).

  2. A. V. Lyglaev, S. P. Fedorov, A. I. Levin, A. M. Bol’shakov, and S. I. Alekseeva, “Cold resistance and strength of large thin-walled construction members,” Zavod. Lab. 64 (5), 52–55 (1998).

  3. A. A. Gilyazov, A. M. Bol’shakov, N. I. Golikov, N. I. Ivanov, S. S. Sintsov, R. P. Tikhonov, A. A. Alekseev, and L. N. Tatarinov, “Carrying capacity of aging gas mains under extreme north conditions,” Gazov. Prom., No. 1, 38–39 (2006).

  4. A. V. Lyglaev, A. I. Levin, I. A. Kornev, M. K. Cheremkin, and A. M. Bol’shakov, “Operation of main pipes under north conditions,” Gazov. Prom., No. 8, 37–40 (2001).

  5. G. R. Irwin, “Fracture,” in Handbuch der Physik (1958), Vol. V, VI, pp. 551–590.

    Google Scholar 

  6. B. Cotterell, “Notes on paths and stability of cracks,” Int. J. Fract. Mechan. 3 (2), 526–533 (1966).

  7. Yu. G. Matvienko, “Nonsingular T-stresses in the criteria of the fracture mechanics of notched bodies,” Vestn. Nizhegorod. Univ, No. 4, 5, 2651–2652 (2011).

    Google Scholar 

  8. Yu. G. Matvienko, “Nonsingular T-stresses in the problems of two-parameter fracture mechanics,” Zavod. Lab., No. 2, 51–58 (2012).

  9. Yu. G. Matvienko, M. A. Bubnov, and G. I. Nesterenko, “Averaging of stresses in searching for a crack trajectory,” Vestn. Nauchno-Tekhn. Razvit. 52 (12), 19–24 (2011).

  10. T. L. Becker, R. M. Cannon, and R. O. Ritchie, “Finite crack kinking and T-stresses in functionally graded materials,” Int. J. Solids Struct. 38, 5545–5563 (2001).

  11. C. S. Chen, P. A. Wawrzynek, and A. R. Ingraffea, “Prediction of residual strength and curvilinear crack growth in aircraft fuselages,” AIAA J. 40 (8), 1644–1652 (2002).

    Article  Google Scholar 

  12. Yu. G. Matvienko and R. A. Pochinkov, “Influence of nonsingular T-stress components on the plastic deformation zones at the tip of a mode I crack,” Deform. Razrushenie Mater., No. 3, 6–14 (2012).

  13. A. M. Bol’shakov and L. A. Prokop’ev, “Influence of a stress distribution on the plasticity zone at the tip of a mode I crack with allowance for T-stresses,” Deform. Razrushenie Mater., No. 7, 11–14 (2016).

  14. C. F. Shih, “Small-scale yielding analysis of mixed plane strain crack problem,” Fract. Analysis 560, 187–210 (1974).

  15. Yu. Ito and Yu. Murakami, Handbook of Stress Intensity Factors, Ed. by Yu. Murakami (Mir, Moscow, 1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bol’shakov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bol’shakov, A.M., Prokop’ev, L.A. Prediction of a Crack Growth Trajectory with Allowance for the Angular Distribution of the Small Components of the Tangential Stresses at a Crack Tip. Russ. Metall. 2019, 964–966 (2019). https://doi.org/10.1134/S0036029519100033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519100033

Navigation