Skip to main content
Log in

Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: I. Experimental Studies

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Yield strength σy, macroelastic limit σ0, and effective grain-boundary hardening coefficient Keff in the Hall–Petch relation (\({\sigma _y} = {\sigma _0} + {K_{eff}}/\sqrt d \)) in the submicrocrystalline (SMC) materials produced by equalchannel angular pressing are experimentally studied. It is shown that, as compared to parameter σ0 and K in the Hall–Petch relation for coarse-grained metals, the SMC metals are characterized by higher values of σ0 and lower values of Keff. The critical grain size (d1) at which Keff in the σyd–1/2 relations of SMC materials changes falls in the range 0.2–0.5 μm. The dependences of macroelastic limit σ0 and coefficient Keff on the annealing temperature are found to be determined by recrystallization. If abnormal grain growth develops in annealing of SMC metals, anomalous hardening is detected and a nonmonotonic temperature dependence of coefficient Keff takes place. In the case of conventional recrystallization at a high annealing temperature, SMC metals exhibit a smooth decrease in σ0 and an increase in Keff to the values of K characteristic of coarsegrained materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Goldshtein, V. S. Litvinov, and B. M. Bronfin, Physical Metallurgy of High-Strength Alloys (Metallurgiya, Moscow, 1986).

    Google Scholar 

  2. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967).

    Google Scholar 

  3. Ultrafine Grain in Metals, Ed. by L. K. Gordienko (Metallurgiya, Moscow, 1973).

  4. E. F. Dudarev, Microplastic Deformation and Yield Strength of Polycrystals (Tomskii Gos. Univ., Tomsk, 1988).

    Google Scholar 

  5. V. E. Panin, Yu. V. Grinyaev, V. I. Danilov, L. B. Zuev, V. E. Egorushkin, T. F. Elsukova, N. A. Koneva, E. V. Kozlov, T. M. Poletika, S. N. Kul’kov, S. G. Psakh’e, S. Yu. Korostelev, and N. V. Chertova, Structural Levels of Plastic Deformation and Fracture (Nauka, Novosibirsk, 1990).

    Google Scholar 

  6. M. A. Meyers, U. R. Andrade, and A. H. Chokshi, “The effect of grain size on the high-strain, highstrain-rate behavior of copper,” Met. Mater. Trans. A 26, 2881–2893 (1995).

    Article  Google Scholar 

  7. R. Z. Valiev and T. G. Langdon, “Principles of equalchannel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51 (7), 881–981 (2006).

    Article  Google Scholar 

  8. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation (Nova Sci. Publ., New York, 2010).

    Google Scholar 

  9. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, “Microhardness measurements and the Hall–Petch relationship in an Al–Mg alloys with submicrometer grain size,” Acta Materialia 44 (11), 4619–4629 (1996).

    Article  Google Scholar 

  10. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev, and T. G. Langdon, “Structural evolution and the Hall–Petch relationship in an Al–Mg–Li–Zr alloys with ultra-fine grain size,” Acta Materialia 45 (11), 4751–4757 (1997).

    Article  Google Scholar 

  11. H. K. Kim and W. J. Kim, “Microstructural instability and strength of an AZ31 Mg alloy after severe plastic deformation,” Mater. Sci. Eng. A 385 (1–2), 300–308 (2004).

    Article  Google Scholar 

  12. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion,” Acta Materialia 55 (18), 6039–6050 (2007).

    Article  Google Scholar 

  13. H. Conrad, “Grain size dependence of the plastic deformation kinetics in Cu,” Mater. Sci. Eng. A 341 (1–2), 216–228 (2003).

    Article  Google Scholar 

  14. E. Schafler and M. B. Kerber, “Microstructural investigation of the annealing behavior of high-pressure torsion (HPT) deformed copper,” Mater. Sci. Eng. A 462 (1–2), 139–143 (2007).

    Article  Google Scholar 

  15. V. A. Pozdnyakov, “Mechanisms of plastic deformation and the anomalies of the Hall–Petch dependence in metallic nanocrystalline materials,” Phys. Met. Metallogr. 96 (1), 105–119 (2001).

    Google Scholar 

  16. C. W. Su, B. W. Chua, L. Lu, and M. O. Lai, “Properties of severe plastically deformed Mg alloys,” Mater. Sci. Eng. A 402 (1–2), 163–169 (2005).

    Article  Google Scholar 

  17. W. J. Kim, C. W. An, Y. S. Kim, and S. I. Hong, “Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing,” Scripta Materialia 47 (1), 39–44 (2002).

    Article  Google Scholar 

  18. G. A. Malygin, “Plasticity and strength of micro-and nanocrystalline materials: review,” Fiz. Tverd. Tela 49 (6), 961–982 (2007).

    Google Scholar 

  19. S. G. Zaichenko and A. M. Glezer, “Disclination mechanism of plastic deformation in nanocrystalline materials,” Fiz. Tverd. Tela 39 (11), 2023–2028 (1997).

    Google Scholar 

  20. M. A. Munoz-Morris, O. C. Garcia, and D. G. Morris, “Mechanical behavior of dilute Al–Mg alloy processed by equal channel angular pressing,” Scripta Materialia 48 (3), 213–218 (2003).

    Article  Google Scholar 

  21. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  22. M. R. Barnett, Z. Keshavarz, A. G. Beer, and D. Atwell, “Influence of grain size on the compressive deformation of wrought Mg–3Al–1Z,” Acta Materialia 52 (17), 5093–5103 (2004).

    Article  Google Scholar 

  23. A. Yamashita, Z. Horita, and T. G. Langdon, “Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation,” Mater. Sci. Eng. A 300 (1–2), 142–147 (2001).

    Article  Google Scholar 

  24. A. V. Nokhrin, V. N. Chuvil’deev, E. S. Smirnova, I. M. Makarov, Yu. G. Lopatin, and V. I. Kopylov, “Thermal stability of the structure of microcrystalline metals produced by equal-channel angular pressing,” Russ. Metall. (Metally), No. 2, 126–140 (2004).

    Google Scholar 

  25. X. Molodova, G. Gottstein, M. Winning, and R. J. Hellmig, “Thermal stability of ECAP processed pure copper,” Mater. Sci. Eng. A 460–461 (15), 204–213 (2007).

    Article  Google Scholar 

  26. V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, L. M. Malashenko, and V. A. Kukareko, “Anomalous grain growth in nano-and microcrystalline metals produced by ECA pressing: I. Structural investigations,” Materialoved., No. 4, 9–18 (2003).

    Google Scholar 

  27. V. N. Chuvil’deev, A. V. Nokhrin, and V. I. Kopylov, “Anomalous strengthening upon annealing of microcrystalline metals produced by high-cycle equal-channel angular pressing,” Russ. Metall. (Metally), No. 3, 240–251 (2003).

    Google Scholar 

  28. A. V. Korznikov, S. Idrisova, and N. I. Noskova, “Structure and thermal stability of submicron-grained molybdenum,” Phys. Met. Metallogr. 85 (3), 327–331 (1998).

    Google Scholar 

  29. Yu. V. Ivanisenko, A. A. Sirenko, and A. V. Korznikov, “Effect of heating on the structure and mechanical properties of submicron-grained armco iron,” Fiz. Met. Metalloved. 87 (4), 78–83 (1999).

    Google Scholar 

  30. R. Z. Valiev, A. V. Sergueeva, and A. K. Mukherjee, “The effect of annealing on tensile deformation behavior of nanostructured SPD titanium,” Scripta Materialia 49 (7), 669–674 (2003).

    Article  Google Scholar 

  31. V. N. Chuvil’deev, Nonequilibrium Boundaries in Grains in Metals. Theory and Applications (Fizmatlit, Moscow, 2004).

    Google Scholar 

  32. V. N. Chuvil’deev, V. I. Kopylov, and W. Zeiger, “Nonequilibrium grain boundaries. Theory and its applications for describing nano-and microcrystalline materials processed by ECAP,” Ann. Chim.: Sci. Mater. 27 (3), 56–64 (2002).

    Google Scholar 

  33. V. N. Chuvil’deev, A. V. Nokhrin, V. I. Kopylov, Yu. G. Lopatin, N. V. Melekhin, O. E. Pirozhnikova, M. M. Myshlyaev, and N. V. Sakharov, “Conditions for the applicability of the Hall–Petch relation for nanoand microcrystalline materials produced by severe plastic deformation,” Deform. Razr. Mater., No. 12, 17–25 (2009).

    Google Scholar 

  34. A. P. Kraev, “Microplastic deformation and its application for analysis of the structure and mechanical properties of steels,” Extended Abstract of Cand Sci. (Eng.) Dissertation, Nizhny Novgorod State University, Nizhny Novgorod, 1999.

    Google Scholar 

  35. A. V. Nokhrin and I. M. Makarov, “Studying the grain structure of nano-and microcrystalline metals by atomic force microscopy,” Zavod. Lab. 68 (1), 70–79 (2002).

    Google Scholar 

  36. A. V. Nokhrin, I. M. Makarov, and Yu. G. Lopatin, “Technique for an investigation of the granular structure of microcrystalline superplastic aluminum alloys by atomic force microscopy,” Zavod. Lab., No. 12, 18–26 (2004).

    Google Scholar 

  37. E. V. Kozlov, A. N. Zhdanov, N. A. Popova, E. E. Pekarskaya, and N. A. Koneva, “Subgrain structure and internal stress fields in UFG materials: problem of Hall–Petch relation,” Mater. Sci. Eng. A 387–389, 789–794 (2004).

    Article  Google Scholar 

  38. A. Mishra, B. K. Kad, F. Gregori, and M. A. Meyers, “Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis,” Acta Materialia 55, 13–28 (2007).

    Article  Google Scholar 

  39. R. Mishnev, I. Shakhova, A. Belyakov, and R. Kaibyshev, “Deformation microstructure, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy,” Mater. Sci. Eng. A 629, 29–40 (2015).

    Article  Google Scholar 

  40. D. J. Dunstan and A. J. Bushby, “Grain size dependence of the strength of metals: the Hall–Petch effect does not scale as the inverse square root of grain size,” Intern. J. Plasticity 53, 56–65 (2014).

    Article  Google Scholar 

  41. A. Loucif, R. B. Figueiredo, T. Baudin, F. Brisset, R. Cheman, and T. G. Langdon, “Ultrafine grains and the Hall–Petch relationship in an Al–Mg alloy processed by high-pressure torsion,” Mater. Sci. Eng. A 532, 139–145 (2012).

    Article  Google Scholar 

  42. Y. Wang and H. Choo, “Influence of texture on Hall–Petch relationships in a Mg alloy,” Acta Materialia 81, 83–97 (2014).

    Article  Google Scholar 

  43. W. Yuan, S. K. Panigrahi, J.-Q. Su, and R. S. Mishra, “Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy,” Scripta Materialia 65, 994–997 (2011).

    Article  Google Scholar 

  44. Y. K. Li, F. Liu, G. P. Zheng, D. Pan, Y. H. Zhao, and Y. M. Wang, “Strength scaling low, deformation kinetics and mechanisms of nanostructured Ti,” Mater. Sci. Eng. A 573, 141–147 (2013).

    Article  Google Scholar 

  45. V. K. Babich, Yu. P. Gul’, and I. E. Dolzhenkov, Strain Aging of Steel (Metallurgiya, Moscow, 1972).

    Google Scholar 

  46. W. Wei, G. Chen, and J. Wang, “Microstructure and tensile properties of ultrafine grained copper processed by equal-channel angular pressing,” Rare Metals 25 (6), 697–703 (2006).

    Article  Google Scholar 

  47. E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Fundamentals of the Plastic Deformation of Nanostructured Materials, Ed. by A. M. Glezer (Fizmatlit, Moscow, 2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Chuvil’deev.

Additional information

Original Russian Text © V.N. Chuvil’deev, A.V. Nokhrin, M.M. Myshlyaev, V.I. Kopylov, Yu.G. Lopatin, N.V. Melekhin, A.V. Piskunov, A.A. Bobrov, O.E. Pirozhnikova, 2018, published in Metally, 2018, No. 1, pp. 81–102.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Nokhrin, A.V., Myshlyaev, M.M. et al. Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: I. Experimental Studies. Russ. Metall. 2018, 71–89 (2018). https://doi.org/10.1134/S0036029518010044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518010044

Keywords

Navigation