Skip to main content
Log in

Structure and Mechanical and Corrosion Properties of a Magnesium Mg–Y–Nd–Zr Alloy after High Pressure Torsion

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure and the properties of an Mg–Y–Nd–Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20–300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30–100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magnesium and Magnesium Alloys: ASM Specialty Handbook Ed. by M. M. Avedesian and H. Baker, (ASM International, The Mater. Information Soc., Ohaio, 1999).

  2. Y. Chen, Z. Xu, C. Smith, and J. Sankar, “Recent advances on the development of magnesium alloys for biodegradable implants: review,” Acta Biomater. 10 (11), 4561–4573 (2014).

    Article  Google Scholar 

  3. L. L. Rokhlin, T. V. Dobatkina, I. E. Tarytina, V. N. Timofeev, and E. E. Balakhchi, “Peculiarities of the phase relations in Mg-rich alloys of the Mg–Nd–Y system,” J. Alloys Compd. 367 (1–2), 17–19 (2004).

    Article  Google Scholar 

  4. J. F. Nie, “Precipitation and hardening in magnesium alloys,” Met. Mater. Trans. Sec. A 43 (11), 3891–3939 (2012).

    Article  Google Scholar 

  5. T. Mohri, M. Mabuchi, N. Saito, and M. Nakamura, “Microstructure and mechanical properties of a Mg–4Y–3RE alloy processed by thermo-mechanical treatment,” Mater. Sci. Eng. A 257 (2), 287–294 (1998).

    Article  Google Scholar 

  6. W. Pachla, A. Mazur, J. Skiba, M. Kulczyk, and S. Przybysz, “Wrought magnesium alloys ZM21, ZW3 and WE43 processed by hydrostatic extrusion with back pressure,” Arch. Met. Mater. 57 (2), 482–493 (2012).

    Google Scholar 

  7. S. K. Panigrahi, W. Yuan, R. S. Mishra, R. DeLorme, B. Davis, R. A. Howell, and K. Cho, “A study on the combined effect of forging and aging in Mg–Y–RE alloy,” Mater. Sci. Eng. A 530, 28–35 (2011).

    Article  Google Scholar 

  8. X. Huang, K. Suzuki, and Y. Chino, “Static recrystallization and mechanical properties of Mg–4Y–3RE magnesium alloy sheet processed by differential speed rolling at 823 K,” Mater. Sci. Eng. A 538, 281–287 (2012).

    Article  Google Scholar 

  9. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45 (2), 103–189 (2000).

    Article  Google Scholar 

  10. S. R. Agnew, P. Mehrotra, T. M. Lillo, G. M. Stoica, and P. K. Liaw, “Texture evolution of five wrought magnesium alloys during route a equal channel angular extrusion: experiments and simulations,” Acta Mater. 53, 3135–3146 (2005).

    Article  Google Scholar 

  11. K. V. Kutniy, I. I. Papirov, M. A. Tikhonovsky, A. I. Pikalov, S. V. Sivtzov, L. A. Pirozhenko, V. S. Shokurov, and V. A. Shkuropatenko, “Influence of grain size on mechanical and corrosion properties of magnesium alloy for medical implants,” Materwiss Werksttech 40 (4), 242–246 (2009).

    Article  Google Scholar 

  12. Z. Kang, L. Zhou, and J. Zhang, “Achieving high strain rate superplasticity in Mg–Y–Nd–Zr alloy processed by homogenization treatment and equal-channel angular pressing,” Mater. Sci. Eng. A 633, 59–62 (2015).

    Article  Google Scholar 

  13. G. Cao, D. Zhang, W. Zhang, and C. Qiu, “Microstructure evolution and mechanical properties of Mg–Nd–Y alloy in different friction stir processing conditions,” J. Alloys Compd. 636, 12–19 (2015).

    Article  Google Scholar 

  14. G. Cao, D. Zhang, F. Chai, W. Zhang, and C. Qiu, “Superplastic behavior and microstructure evolution of a fine-grained Mg–Y–Nd alloy processed by submerged friction stir processing,” Mater. Sci. Eng. A 642, 157–166 (2015).

    Article  Google Scholar 

  15. N. Kumar, D. Choudhuri, R. Banerjee, and R. S. Mishra, “Strength and ductility optimization of Mg–Y–Nd–Zr alloy by microstructural design,” Int. J. Plast. 68, 77–97 (2015).

    Article  Google Scholar 

  16. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  Google Scholar 

  17. K. Edalati, A. Yamamoto, Z. Horita, and T. Ishihara, “High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain,” Scr. Mater. 64 (9), 880–883 (2011).

    Article  Google Scholar 

  18. X. G. Qiao, Y. W. Zhao, W. M. Gan, Y. Chen, M. Y. Zheng, K. Wu, N. Gao, and M. J. Starink, “Hardening mechanism of commercially pure Mg processed by high pressure torsion at room temperature,” Mater. Sci. Eng. A 619, 95–106 (2014).

    Article  Google Scholar 

  19. R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, “Plastic deformation of alloys with submicron-grained structure,” Mater. Sci. Eng. A 137, 35–40 (1991).

    Article  Google Scholar 

  20. P. Serre, R. B. Figueiredo, N. Gao, and T. G. Langdon, “Influence of strain rate on the characteristics of a magnesium alloy processed by high-pressure torsion,” Mater. Sci. Eng. A 528 (10–11), 3601–3608 (2011).

    Article  Google Scholar 

  21. Y. Harai, M. Kai, K. Kaneko, Z. Horita, and T. G. Langdon, “Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion,” Mater. Trans. 49, 76–83 (2008).

    Article  Google Scholar 

  22. A. S. J. Al-Zubaydi, A. P. Zhilyaev, S. C. Wang, and P. A. S. Reed, “Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion,” Mater. Sci. Eng. A 637, 1–11 (2015).

    Article  Google Scholar 

  23. S. A. Torbati-Sarraf and T. G. Langdon, “Mechanical properties of ZK60 magnesium alloy processed by highpressure torsion,” Adv. Mater. Res. 922, 767–772 (2014).

    Article  Google Scholar 

  24. S. A. Torbati-Sarraf and T. G. Langdon “Properties of a ZK60 magnesium alloy processed by high-pressure torsion,” J. Alloys Compd. 613, 357–363 (2014).

    Article  Google Scholar 

  25. H.-J. Lee, S. K. Lee, K. H. Jung, G. A. Lee, B. Ahn, M. Kawasaki, and T.G. Langdon, “Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion,” Mater. Sci. Eng. A 630, 90–98 (2015).

    Article  Google Scholar 

  26. M. Kai, Z. Horita, T.G. Langdon, “Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion,” Mater. Sci. Eng. A 488 (1–2), 117–124 (2008).

    Article  Google Scholar 

  27. J. Cižek, I. Procházka, B. Smola, I. Stuliková, R. Kužel, Z. Matej, V. Cherkaska, R. K. Islamgaliev, and O. Kulyasova, “Microstructure and thermal stability of ultrafine grained Mg-based alloys prepared by high-pressure torsion,” Mater. Sci. Eng. A 462 (1–2), 121–126 (2007).

    Google Scholar 

  28. H. Matsunoshita, K. Edalati, M. Furui, and Z. Horita, “Ultrafine-grained magnesium-lithium alloy processed by high-pressure torsion: low-temperature superplasticity and potential for hydroforming,” Mater. Sci. Eng. A 640, 443–448 (2015).

    Article  Google Scholar 

  29. B. Srinivasarao, A. P. Zhilyaev, I. Gutiérrez-Urrutia, M. T. Pérez-Prado “Stabilization of metastable phases in Mg–Li alloys by high-pressure torsion,” Scr. Mater. 68 (8), 583–586 (2013).

    Article  Google Scholar 

  30. F. Meng, J. M. Rosalie, A. Singh, H. Somekawa, and K. Tsuchiya, “Ultrafine grain formation in Mg–Zn alloy by in situ precipitation during high-pressure torsion,” Scr. Mater. 78–79, 57–60 (2014).

    Article  Google Scholar 

  31. F. Meng, J. M. Rosalie, A. Singh, and K. Tsuchiya, “Precipitation behavior of an ultra-fine grained Mg–Zn alloy processed by high-pressure torsion,” Mater. Sci. Eng. A 644, 386–391 (2015).

    Article  Google Scholar 

  32. R. Lapovok, X. Gao, J. F. Nie, Y. Estrin, and S. N. Mathaudhu, “Enhancement of properties in cast Mg–Y–Zn rod processed by severe plastic deformation,” Mater. Sci. Eng. A 615, 198–207 (2014).

    Article  Google Scholar 

  33. J. H. Gao, S. K. Guan, Z. W. Ren, Y. F. Sun, S. J. Zhu, and B. Wang, “Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid,” Mater. Lett. 65 (4), 691–693 (2011).

    Article  Google Scholar 

  34. J. H. Li and P. Schumacher “Tailoring precipitates in Mg–6Zn–2Gd based alloy subjected to high pressure torsion,” in Magnesium Technology, Ed. by N. Hort, S. N. Mathaudhu, N. R. Neelameggham and M. Alderman, (Miner. Metals. Mater. Soc., Warrendale, 2013), pp. 351–356.

    Google Scholar 

  35. E. A. Lukyanova, N. S. Martynenko, I. E. Shakhova, A. N. Belyakov, L. L. Rokhlin, S. V. Dobatkin, and Yu. Z. Estrin, “Strengthening of an age-hardenable WE43 magnesium alloy processed by high pressure torsion,” Mater. Lett. 170, 5–9 (2016).

    Article  Google Scholar 

  36. D. X. Liu, X. Pang, D. L. Li, C. G. Guo, J. Wongsa-Ngam, T. G. Langdon, and M. A. Meyers, “Microstructural evolution and properties of a hot extruded and HPT-processed resorbable magnesium WE43 alloy,” Adv. Eng. Mater. 19 (3), 1600698 (1–8) (2016).

    Article  Google Scholar 

  37. S. F. Kurtasov, “Method for the quantitative analysis of rolling textures of materials with a cubic crystal lattice,” Zavod. Lab. 73 (7), 29–35 (2007).

    Google Scholar 

  38. V. N. Serebryany, G. S. D’yakonov, V. I. Kopylov, G. A. Salishchev, and S. V. Dobatkin, “Texture and structure contribution to low-temperature plasticity enhancement of Mg–Al–Zn–Mn alloy MA2-1pch after ECAP and annealing,” Phys. Met. Metallogr. 114 (5), 448–456 (2013).

    Article  Google Scholar 

  39. N. P. Zhuk, Theory on Corrosion and Protection of Metals (Metallurgiya, Moscow, 1976).

    Google Scholar 

  40. H. Okamoto, “Mg–Nd,” J. Phase Equilib. Diffus. 28 (4), 405 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Dobatkin.

Additional information

Original Russian Text © E.A. Lukyanova, N.S. Martynenko, V.N. Serebryany, A.N. Belyakov, L.L. Rokhlin, S.V. Dobatkin, Yu.Z. Estrin, 2017, published in Metally, 2017, No. 6, pp. 11–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanova, E.A., Martynenko, N.S., Serebryany, V.N. et al. Structure and Mechanical and Corrosion Properties of a Magnesium Mg–Y–Nd–Zr Alloy after High Pressure Torsion. Russ. Metall. 2017, 912–921 (2017). https://doi.org/10.1134/S0036029517110088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029517110088

Keywords

Navigation