Skip to main content
Log in

Analysis of the geometrical–probabilistic models of electrocrystallization

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The formation of a three-dimensional electrode deposit under potentiostatic conditions, including the stages of nucleation, growth, and overlap of growing new-phase clusters and their diffusion zones, is considered. The models of electrochemical phase formation for kinetics- and diffusion-controlled growth are analyzed, and the correctness of the approximations used in these models is estimated. The possibility of application of these models to an analysis of the electrodeposition of silicon from molten salts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Paunovich and M. Schlesinger, Fundamentals of Electroplating Deposition, 2nd ed. (Wiley Interscience, New York, 2006).

    Book  Google Scholar 

  2. E. Budevski, G. Staikov, and W. J. Lorenz, Electrochemical Phase Formation and Growth (VCH, New York, 1996).

    Book  Google Scholar 

  3. Yu. D. Gamburg, Electrochemical Crystallization of Metals and Alloys (Yanus-K, Moscow, 1997).

    Google Scholar 

  4. Yu. D. Gamburg and J. Zangari, Theory and Practice of Metal Electrodeposition (Springer, New York, 2011).

    Book  Google Scholar 

  5. A. N. Baraboshkin, Electrocrystallization of Metals from Molten Salts (Nauka, Moscow, 1976).

    Google Scholar 

  6. A. Milchev, Electrocrystallization: Fundamentals of Nucleation and Growth (Kluwer Academic Publishers, Boston, 2002).

    Google Scholar 

  7. V. A. Isaev, Electrochemical Phase Formation (UrO RAN, Ekaterinburg, 2007).

    Google Scholar 

  8. A. I. Danilov and Yu. M. Polukarov, “Modern ideas about the processes involving the formation and growth of the nuclei of a new phase under potentiostatic conditions,” Russ. Chem. Rev. 56 (7), 619–632 (1987).

    Article  Google Scholar 

  9. A. Milchev, “Electrocrystallization: nucleation and growth of nanoclusters on solid surfaces,” Russ. J. Electrochem. 44 (6), 619–645 (2008).

    Article  Google Scholar 

  10. M. E. Hyde and R. G. Compton, “A review of the analysis of multiple nucleation with diffusion controlled growth,” J. Electroanal. Chem. 549, 1–12 (2003).

    Article  Google Scholar 

  11. B. R. Scharifker, J. Mostany, M. Palomar-Pardavé, and I. Gonzalez, “On the theory of the potentio-static current transient for diffusion-controlled three-dimensional electrocrystallization processes,” J. Electrochem. Soc. 146 (3), 1005–1012 (1999).

    Article  Google Scholar 

  12. V. A. Isaev and A. N. Baraboshkin, “Three-dimensional electrochemical phase formation,” J. Electroanal. Chem. 377, 33–37 (1994).

    Article  Google Scholar 

  13. E. Bosco and S. K. Rangarajan, “Electrochemical phase formation (ECPF) and macrogrowth. Part I. Hemispherical models,” J. Electroanal. Chem. 134, 213–224 (1982).

    Article  Google Scholar 

  14. M. Y. Abyaneh, “Calculation of overlap for nucleation and three-dimensional growth of centres,” Electrochim. Acta. 27 (9), 1329–1334 (1982).

    Article  Google Scholar 

  15. A. N. Kolmogorov, “On the statistical theory of metal crystallization,” Izv. Akad. Nauk SSSR. Ser. Mat., No. 3, 355–359 (1937).

    Google Scholar 

  16. V. Z. Belenky, Geometric-Probabilistic Models of Crystallization. The Phenomenological Approach (Nauka, Moscow, 1980).

    Google Scholar 

  17. B. Dehlman, Kinetics of Heterogeneous Reactions (Mir, Moscow, 1972).

    Google Scholar 

  18. S. Fletcher, “Electrochemical deposition of hemispherical nuclei under diffusion control. Some theoretical considerations,” J. Chem. Soc. Faraday Trans. 79, 467–479 (1983).

    Article  Google Scholar 

  19. M. Sluyters-Rehbach, J. H. O. J. Wijenberg, E. Bosco, and J. H. Sluyters, “The theory of chronoamperometry for the investigation of electrocrystallization. Mathematical description and analysis in the case of diffusion-controlled growth,” J. Electroanal. Chem. 236, 1–20 (1987).

    Article  Google Scholar 

  20. G. Gunawardena, G. J. Hills, I. Montenegro, and B. Scharifker, “Electrochemical nucleation,” J. Electroanal. Chem. 138, 225–239 (1982).

    Article  Google Scholar 

  21. B. R. Scharifker and G. J. Hills, “Theoretical and experimental studies of multiple nucleation,” Electrochim. Acta. 28 (7), 879–889 (1983).

    Article  Google Scholar 

  22. B. R. Scharifker and J. Mostany, “Three-dimensional nucleation with diffusion controlled growth. Part I. Number density of active sites and nucleation rates per site,” J. Electroanal. Chem. 177, 13–23 (1984).

    Article  Google Scholar 

  23. M. V. Mirkin and A. P. Nilov, “Three-dimensional nucleation and growth under controlled potential,” J. Electroanal. Chem. 283 (1, 2), 35–51 (1990).

    Article  Google Scholar 

  24. L. Heerman and A. Tarallo, “Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth,” J. Electroanal. Chem. 470, 70–76 (1999).

    Article  Google Scholar 

  25. L Heerman and A. Tarallo, “Electrochemical nucleation with diffusion-limited growth. Properties and analysis of transients,” Electrochem. Comm. 2, 85–89 (2000).

    Article  Google Scholar 

  26. P. A. Bobbert, M. M. Wind, and J. Vlieger, “Diffusion to an assembly of slowly growing particles on a substrate,” Physica A 146, 69–88 (1987).

    Article  Google Scholar 

  27. P. C. T. D’Ajello, M. L. Munford, and A. A. Pasa, “Transient equations for multiple nucleation on solid electrodes: a stochastic description,” J. Chem. Phys. 111 (9), 4267–4273 (1999).

    Article  Google Scholar 

  28. P. C. T. D’Ajello, M. A. Fiori, A. A. Pasa, and Z. G. Kipervaser, “Reaction-diffusion interplay in electrochemical deposition processes. A theoretical approach,” J. Electrochem. Soc. 147 (12), 4562–4566 (2000).

    Article  Google Scholar 

  29. E. Matthijs, S. Langerock, E. Michailova, and L. Heerman, “The potentiostatic transient for 3D nucleation with diffusion-controlled growth: theory and experiment for progressive nucleation,” J. Electroanal. Chem. 570, 123–133 (2004).

    Article  Google Scholar 

  30. M. Y. Abyaneh, “Formulation of a general model for nucleation and growth of electrodeposits,” Electrochim. Acta 36 (3, 4), 727–732 (1991).

    Article  Google Scholar 

  31. L. Heerman and A. Tarallo, “Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth,” J. Electroanal. Chem. 470, 70–76 (1994).

    Article  Google Scholar 

  32. D. Mazaira, C. Borrás, J. Mostany, and B. R. Scharifker, “Three-dimensional nucleation with diffusioncontrolled growth: simulation of hierarchical diffusion zones overlap,” J. Electroanal. Chem. 631, 22–28 (2009).

    Article  Google Scholar 

  33. Yu. P. Zaykov, S. I. Zhuk, A. A. Isakov, O. V. Grishenkova, and V. A. Isaev, “Electrochemical nucleation and growth of silicon in the KF–KCl–K2SiF6 melt,” J. Solid State Electrochem. 19, 1341–1345 (2015).

    Article  Google Scholar 

  34. A. Kelaidopoulou, G. Kokkinidis, and A. Milchev, “Nucleation and growth of metal catalysts. Part I. Electrodeposition of platinum on tungsten,” J. Electroanal. Chem. 444, 195–201 (1998).

    Article  Google Scholar 

  35. J. Yu, H. Cao, Y. Chen, L. Kang, and H. Yang, “A new approach to the estimation of electrocrystallization parameters,” J. Electroanal. Chem. 474, 69–73 (1999).

    Article  Google Scholar 

  36. O. Brylev, L. Roué, and D. Bélanger, “Rhodium electrodeposition on pyrolytic graphite electrode: Analysis of chronoamperometric curves,” J. Electroanal. Chem. 581, 22–30 (2005).

    Article  Google Scholar 

  37. J. Velmurugan, J.-M. Noël, W. Nogalaa, and M. V. Mirkin, “Nucleation and growth of metal on nanoelectrodes,” Chem. Sci. 3, 3307–3314 (2012).

    Article  Google Scholar 

  38. T. Zapryanova, A. I. Danilov, and A. Milchev, “Growth kinetics of single copper crystals: the concentration dependence,” Russ. J. Electrochem. 46 (6), 607–610 (2010).

    Article  Google Scholar 

  39. A. Radisic, P. M. Vereecken, J. B. Hannon, P. C. Searson, and F. M. Ross, “Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data,” Nano Let. 6 (2), 238–242 (2006).

    Article  Google Scholar 

  40. S. Fletcher, “Nucleation on active sites: Part III. Nucleation modelled as a pure birth process and nucleation modelled as a birth-and-death process,” J. Electroanal. Chem. 215, 1–9 (1986).

    Article  Google Scholar 

  41. A. Milchev, “Electrochemical nucleation on active sites—what do we measure in reality? Part I, II,” J. Electroanal. Chem. 457, 35–52 (1998).

    Article  Google Scholar 

  42. J. W. M. Jacobs, “Note on a theory of three dimensional electrochemical nucleation with diffusion-controlled growth,” J. Electroanal. Chem. 247, 135–144 (1988).

    Article  Google Scholar 

  43. A. Milchev and T. Zapryanova, “Nucleation and growth of copper under combined charge transfer and diffusion limitations: Part I,” Electrochim. Acta 51 (14), 2926–2933 (2006).

    Article  Google Scholar 

  44. S. Salomé, N. M. Pereira, E. S. Ferreira, C. M. Pereira, and A. F. Silva, “Tin electrodeposition from choline chloride based solvent: Influence of the hydrogen bond donors,” J. Electroanal. Chem. 703, 80–87 (2013).

    Article  Google Scholar 

  45. Yu. P. Zaikov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, and V. A. Isaev, “Silicon electrodeposition from melt KF–KCl–KI–K2SiF6,” Rasplavy (2016) (in press).

    Google Scholar 

  46. A. L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, and P. Chamelot, “Silicon electrodeposition in molten fluorides,” Electrochim. Acta. 62, 282–289 (2012).

    Article  Google Scholar 

  47. K. L. Carleton, J. M. Olson, and A. Kibbler, “Electrochemical nucleation and growth of silicon in molten fluorides,” J. Electrochem. Soc. 130, 782–786 (1983).

    Article  Google Scholar 

  48. Z. Cai, Yu. Li, and W. Tian, “Electrochemical behavior of silicon compound in LiF–NaF–KF–Na2SiF6 molten salt,” Ionics 17, 821–826 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Isaev.

Additional information

Original Russian Text © V.A. Isaev, O.V. Grishenkova, Yu.P. Zaykov, 2016, published in Rasplavy, 2016, No. 5, pp. 355–370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, V.A., Grishenkova, O.V. & Zaykov, Y.P. Analysis of the geometrical–probabilistic models of electrocrystallization. Russ. Metall. 2016, 776–784 (2016). https://doi.org/10.1134/S0036029516080061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516080061

Keywords

Navigation