Skip to main content
Log in

Solid solution decomposition mechanisms in cast and microcrystalline Al-Sc alloys: I. Experimental studies

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure and the electrical and mechanical properties of Al-Mg-0.22 wt % Sc-0.15 wt % Zr alloys with various magnesium contents (0, 1.5, 4.5 wt %) are experimentally studied during the decomposition of the solid solution of scandium and zirconium in the states after solidification from a melt (cast ingots) and after subsequent multicycle equal-channel angular pressing (microcrystalline structure). The dependences of electrical resistivity ρ, microhardness HV, macroelasticity limit σ0, and yield strength σy on the annealing temperature and time are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Drits, L. S. Toropova, and Yu. G. Bykov, “Effect of Rare-Earth Metals on the Mechanical Properties of the Al-6.5% Mg Alloy,” Metalloved. Term. Obrab. Met., No. 10, 35–37 (1980).

  2. M. E. Drits, L. S. Toropova, and Yu. G. Bykov, “Homogenization of Al-Mg-Sc Alloys,” Metalloved. Term. Obrab. Met., No. 7, 60–63 (1983).

  3. M. E. Drits, Yu. G. Bykov, and L. S. Toropova, “Effect of Dispersity of the ScAl3 Phase on the Strengthening of an Al-6.3% Mg-0.21% Sc Alloy,” Metalloved. Term. Obrab. Met., No. 4, 48–50 (1985)

  4. T. Torma, E. Kovacs-Csetenyi, L. Vitalis, et al., “The Effect of Scandium Addition on Mechanical Properties of Pure Aluminium and of an AlMg6 Alloy,” Mater. Sci. Forum 13/14, 497–604 (1987).

    Article  Google Scholar 

  5. R. R. Sawtell and C. L. Jensen, “Mechanical Properties and Microstructures of Al-Mg-Sc Alloys,” Met. Trans. A 21, 421–430 (1990).

    Article  Google Scholar 

  6. V. I. Elagin, V. V. Zakharov, and T. D. Rostova, “Aluminum Alloys Alloyed with Scandium,” Metalloved. Term. Obrab. Met., No. 1, 24–28 (1992).

  7. Yu. A. Filatov, “Deformable Alloys Based on the Al-Mg-Sc System,” Metalloved. Term. Obrab. Met., No. 6, 33–36 (1996).

  8. V. V. Cherkasov, P. P. Pobezhimov, L. P. Nefedova, et al., “Formation of the Structure and Properties of Casting Al-Mg Alloy with Scandium,” Metalloved. Term. Obrab. Met., No. 6, 30–32 (1996).

  9. G. Cacciamani, P. Riani, G. Borzone, et al., “Thermodynamic Measurements and Assessment of the Al-Sc System,” Intermetallics 7, 101–108 (1999).

    Article  CAS  Google Scholar 

  10. A. R. Karnesky, M. E. van Dalen, D. C. Dunand, and D. N. Seidman, “Effects of Substituting Rare-Earth Elements for Scandium in a Precipitation-Strengthened Al-0.08 at % Sc Alloy,” Scripta Materialia 55, 437–440 (2006).

    Article  CAS  Google Scholar 

  11. E. A. Marquis, D. N. Seidman, M. Asta, and C. Woodward, “Composition Evolution of Nanoscale Al3Sc Precipitates in an Al-Mg-Sc Alloy: Experiments and Computations,” Acta Materialia 54, 119–130 (2006).

    Article  CAS  Google Scholar 

  12. Woei-Shyan Lee and Tao-Hsing Chen, “Rate-Dependent Deformation and Dislocation Substructure of Al-Sc Alloy,” Scripta Materialia 54, 1463–1468 (2006).

    Article  CAS  Google Scholar 

  13. A. R. Karnesky, L. Meng, and D. C. Dunand, “Strengthening Mechanisms in Aluminum Containing Coherent Al3Sc Precipitates and Incoherent Al2O3 Dispersoids,” Acta Materialia 55, 1299–1308 (2007).

    Article  CAS  Google Scholar 

  14. V. Rajinkanth, V. Jindal, V. G. Akkimardi, et al., “Transmission Electron Microscopy Studies on the Effect of Strain on Al and Al-l% Sc Alloy,” Scripta Materialia 57, 425–428 (2007).

    Article  Google Scholar 

  15. Zou Liang, Pan Qing-lin, He Yun-bin, et al., “Effect of Minor Sc and Zr Addition on Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Alloys,” Trans. Nonferrous Met. Soc. China 17, 340–345 (2007).

    Article  Google Scholar 

  16. B. Smola, I. Stulikova, V. Ocenasek, J. Pelcova, and V. Neubert, “Annealing Effects in Al-Sc Alloys,” Mater. Sci. Eng. A. 462, 370–374 (2007).

    Article  Google Scholar 

  17. Raju P. Nada, Rao K. Srinivasa, G. M. Reddy, et al., “Microstructure and High Temperature Stability of Age Hardenable AA 2219 Aluminium Alloy Modified by Sc, Mg and Zr Additions,” Mater. Sci. Eng. A. 464, 192–201 (2007).

    Article  Google Scholar 

  18. Z. Liu, Z. Li, M. Wang, and Y. Weng, “Effect of Complex Alloying of Sc, Zr and Ti on the Microstructure and Mechanical Properties of Al-5Mg Alloys,” Mater. Sci. Eng. A. 483–484, 120–122 (2008).

    Google Scholar 

  19. J. Royset, N. Ryum, and D. Bettella, “On the Addition of Precipitation and Work-Hardening in an Al-Sc Alloy,” Mater. Sci. Eng. A. 483–484, 175–178 (2008).

    Google Scholar 

  20. C. Watanabe, R. Monzen, and K. Tazaki, “Effects of Al3Sc Particle Size and Precipitate-Free Zones on Fatigue Behavior and Dislocation Structure of an Aged Al-Mg-Sc Alloy,” Intern. J. Fatigue 30, 635–641 (2008).

    Article  CAS  Google Scholar 

  21. W. J. Kim, J. K. Kim, H. K. Kim, et al., “Effect of Post Equal-Channel-Angular-Pressing Aging on the Modified 7075 Al Alloy Containing Sc,” J. Alloys Compounds 450, 222–228 (2008).

    Article  CAS  Google Scholar 

  22. T. D. Rostova, V. G. Davidov, V. I. Yelagin, and V. V. Zakharov, “Effect of Scandium on Recrystallization of Aluminium and Its Alloys,” Mater. Sci. Forum 331–337, 793–798 (2000).

    Article  Google Scholar 

  23. M. Furukawa, A. Utsunomiya, K. Matsubara, et al., “Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al-Sc Alloy,” Acta Materialia 49, 3829–3838 (2001).

    Article  CAS  Google Scholar 

  24. S. Lee, A. Utsunomiya, H. Akamatsu, et al., “Influence of Scandium and Zirconium on Grain Boundary Stability and Superplastic Ductilities in Ultrafine-Grained Al-Mg Alloys,” Acta Materialia 50, 553–564 (2002).

    Article  CAS  Google Scholar 

  25. M. Ferry and N. Burhan, “Microstructural Evolution in Fine-Grained Al-0.3 wt % Sc Alloy Produced by Severe Plastic Deformation,” Scripta Materialia 56, 525–528 (2007).

    Article  CAS  Google Scholar 

  26. W. R. Yancy and T. H. Sanders, “Contribution of Al3Sc to Recrystallization Resistance in Wrought Al-Sc Alloy,” Met. Trans. A 23, 1947–1955 (1992).

    Article  Google Scholar 

  27. E.A. Marquis and D. N. Seidman, “Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys,” Acta Materialia 49, 1909–1919 (2001).

    Article  CAS  Google Scholar 

  28. M. E. Drits, L. S. Toropova, Yu. G. Bykov, et al., “Structure and Properties of Al-Sc and Al-Mg-Sc Alloys,” in Metallurgy and Physical Metallurgy of Nonferrous Alloys, Ed. by M. E. Drits (Nauka, Moscow, 1982).

    Google Scholar 

  29. M. Nakayama, A. Furuta, and Y. Miura, “Precipitation of Al2Sc in Al-0.23 mass % Sc Alloy,” Met. Trans. 38(10), 852–857 (1997).

    CAS  Google Scholar 

  30. J. Royset and N. Ryum, “Kinetics and Mechanisms of Precipitation in an Al-0.2 wt % Sc Alloy,” Mater. Sci. Eng. A 396, 409–422 (2005).

    Article  Google Scholar 

  31. V. V. Zakharov, “Stability of the Solid Solution of Scandium in Aluminum,” Metalloved. Term. Obrab. Met., No. 2, 15–20 (1997).

  32. R. W. Hyland, “Homogeneous Nucleation Kinetics of Al3Sc in a Dilute Al-Sc Alloy,” Mater. Trans. A 23, 1947–1955 (1992).

    Article  Google Scholar 

  33. J. Royset and N. Ryum, “Some Comments on the Misfit and Coherency Loss of Al3Sc Particles in Al-Sc Alloys,” Scripta Materialia 52, 1275–1279 (2005).

    Article  CAS  Google Scholar 

  34. S. Iwamura and Y. Miura, “Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates,” Acta Materialia 52, 591–600 (2004).

    Article  CAS  Google Scholar 

  35. V. M. Segal, V. I. Reznikov, V. I. Kopylov, et al., Plastic Structure Formation in Metals (Nauka i Tekhnika, Minsk, 1994).

  36. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation (Nova Science, New York, 2010).

    Google Scholar 

  37. A. V. Nokhrin, I. M. Makarov, and Yu. G. Lopatin, “Technique for an Investigation of the Granular Structure of Microcrystalline Superplastic Aluminum Alloys by Atomic Force Microscopy,” Zavod. Lab., No. 12, 25–34 (2004).

  38. O. A. Shmatko and Yu. V. Usov, Structure and Properties of Metals and Alloys. Electrical and Magnetic Properties of Metals: A Handbook (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  39. A. P. Kraev, “Microplastic Deformation and the Application of Its Parameters to Analyze the Structure and Mechanical Properties of Steels,” Extended Abstract of Cand. Sci. (Eng.) Dissertation, NGTU, Nizhni Novgorod, 1999.

    Google Scholar 

  40. V. N. Chuvil’deev, A. V. Nokhrin, and V. I. Kopylov, “Anomalous Strengthening upon Annealing of Microcrystalline Metals Produced by High-Cycle Equal-Channel Angular Pressing,” Russian Metallurgy (Metally), No. 3, 265–276 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nokhrin.

Additional information

Original Russian Text © V.N. Chuvil’deev, A.V. Nokhrin, I.M. Makarov, Yu.G. Lopatin, N.V. Sakharov, N.V. Melekhin, A.V. Piskunov, E.S. Smirnova, V.I. Kopylov, 2012, published in Metally, 2012, No. 3, pp. 71–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuvil’deev, V.N., Nokhrin, A.V., Makarov, I.M. et al. Solid solution decomposition mechanisms in cast and microcrystalline Al-Sc alloys: I. Experimental studies. Russ. Metall. 2012, 415–427 (2012). https://doi.org/10.1134/S0036029512050084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029512050084

Keywords

Navigation