Skip to main content
Log in

The Role of Radicals in the Conversion of Trifluoromethane in the Flame of Methane–Oxygen Mixtures

  • PHYSICAL CHEMISTRY OF COMBUSTION AND EXPLOSION PROCESSES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The mechanism of CF3H transformation in the flame of methane–oxygen mixtures of various compositions was calculated from the available experimental data on the concentrations of intermediates, taking into account only those elementary reactions whose kinetic parameters are known. In the flame of a CH4/O2 mixture, CF3H is destroyed in reactions with H, O, and OH without being regenerated, which disproves the classical (and still existing) ideas about the molecular mechanism of the transformation of initial reagents in the flame. In a rich mixture, the transformation mainly proceeds due to the reactions of CF3H, CF3, СF2, and COF2 with atomic hydrogen, competing with the stage of branching of the reaction chains that inhibit the combustion of methane in oxygen. In a stoichiometric and especially in a lean mixture, the role of oxidative processes involving O and OH increases, and the inhibition effect weakens. The resulting scheme qualitatively describes the entire known experimental picture observed during the combustion of CH4/O2/CF3H mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. ISO 14520-1:2000: Gaseous fire-extinguishing systems—Physical properties and system design.

  2. B. N. Maksimov, V. G. Barabanov, I. L. Serushkin, et al., Industrial Organofluorine Products (Khimiya, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  3. The Kigali Amendment, The Amendment to the Montreal Protocol agreed by the 28th Meeting of the Parties, Kigali, October 10–15, 2016. http://ozone.unep.org/montreal-protocol-substances-deplete-ozone-layer/81853/2197.

  4. Yu. N. Shebeko, V. V. Azatyan, S. N. Kopylov, et al., Combust. Flame 121, 542 (2000).

    Article  CAS  Google Scholar 

  5. S. N. Kopylov, E. V. Nikonova, S. M. Dorofeeva, and V. D. Bychkov, in Proceedings of the 6th International Seminar on Flame Structure, Brussels (Free Univ. of Brussels, Brussels, 2008).

  6. C. Luo, B. Z. Dlugogorski, and E. M. Kennedy, in Proceedings of the 7th HOTWC, 2004, NIST Spec. Publ. 984-2.

  7. T. Noto, V. Babushok, A. Hamins, and W. Tsang, Combust. Flame 112, 147 (1998).

    Article  CAS  Google Scholar 

  8. B. A. Williams, D. M. L’Esperance, and J. W. Fleming, Combust. Flame 120, 160 (2000).

    Article  CAS  Google Scholar 

  9. J. F. Roessler, Proc. Combust. Inst. 27, 287 (1998).

    Article  Google Scholar 

  10. M. Musick and P. J. van Tiggelen, Bull. Soc. Chim. Belg. 105, 555 (1996).

    CAS  Google Scholar 

  11. A. Matsugi and H. Shiina, Bull. Chem. Soc. Jpn. 87, 890 (2014).

    Article  CAS  Google Scholar 

  12. J. T. J. Herron, Phys. Chem. Ref. Data 17, 967 (1988).

    Article  CAS  Google Scholar 

  13. N. K. Srivason et al., J. Phys. Chem. A 111, 6822 (2007).

    Article  Google Scholar 

  14. W. C. Gardiner, Combustion Chemistry (Springer, New York, 1984).

    Book  Google Scholar 

  15. V. N. Kondrat’ev, Rate Constants of Gas-Phase Reactions (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  16. K. Takahashi et al., J. Phys. Chem. A 102, 8339 (1998).

    Article  CAS  Google Scholar 

  17. P. Marshall et al., in Proceedings of the 7th HOTWC, NIST Spec. Publ. 984-2, p. 262.

  18. C. Tsai and D. L. Fadden, J. Phys. Chem. 93, 2471 (1989).

    Article  CAS  Google Scholar 

  19. H. Yu et al., Environ. Sci. Technol. 39, 3020 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Yamamori, K. Takashi, and T. Inomata, J. Phys. Chem. A 103, 8803 (1999).

    Article  CAS  Google Scholar 

  21. H. Richter and J. Vandooren, and P. J. van Tiggelen, J. Phys. Chem. 91, 1748 (1994).

    CAS  Google Scholar 

  22. D. R. F. Burgess et al., NIST Tech. Note No. 1412 (NIST, 1995).

    Google Scholar 

  23. B. C. Garrett and D. G. Truhlar, J. Am. Chem. Soc. 101, 5207 (1979).

    Article  CAS  Google Scholar 

  24. H. Richter and J. Vandooren, and P. J. van Tiggelen, Symp. Int. Combust. Proc. 25, 825 (1994).

    Article  Google Scholar 

  25. V. D. Knyazev, A. Bencsura, and I. R. Slage, J. Phys. Chem. A 101, 849 (1997).

    Article  CAS  Google Scholar 

  26. S. N. Kopylov, Doctoral (Tech. Sci.) Dissertation (All-Russ. Res. Inst. Fire Protect. Ministry RF, Moscow, 2001).

  27. K. R. Ryan and I. C. Plumb, Plasma Chem. Plasma Process 4, 271 (1984).

    Article  CAS  Google Scholar 

  28. D. A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics (Nauka, Moscow, 1987; Springer, Heidelberg, 1995).

  29. D. A. Frank-Kamenetskii, Fundamentals of Macrokinetics, Diffusion, Heat Transfer in Chemical Kinetics (Intellekt, Dolgoprudnyi, 2008) [in Russian].

  30. A. Lewis and G. von Elbe, Combustion, Flames and Explosion of Gases (Academic, New York, 1961).

    Google Scholar 

Download references

Funding

This study was supported by the Innovation Promotion Fund under the UMNIK program (contract nos. 17482GU/2022 of April 26, 2022 and 16371GU/2021 of May 25, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kopylov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, S.N., Kopylov, P.S., Eltyshev, I.P. et al. The Role of Radicals in the Conversion of Trifluoromethane in the Flame of Methane–Oxygen Mixtures. Russ. J. Phys. Chem. 97, 2624–2630 (2023). https://doi.org/10.1134/S003602442311016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442311016X

Keywords:

Navigation