Skip to main content
Log in

Synthesis of barium and strontium carbonate crystals with unusual morphologies using an organic additive

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this paper, strontium carbonate (SrCO3) and barium carbonate (BaCO3) crystals were synthesized in the presence of an organic additive-hexamethylenetetramine (HMT) using two CO2 sources. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the products. The results showed that the morphologies of orthorhombic strontianite SrCO3 transformed from branch-like to flower-like, and to capsicum-like at last, while the morphologies of BaCO3 change from fiber-like to branchlike, and to rod-like finally with an increase of the molar ratio HMT/Sr2+ and HMT/Ba2+ from 0.2 to 10 using ammonium carbonate as CO2 source. When using diethyl carbonate instead of ammonium carbonate as CO2 source, SrCO3 flowers aggregated by rods and BaCO3 shuttles were formed. The possible formation mechanisms of SrCO3 and BaCO3 crystals obtained in different conditions were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Homeijer, M. J. Olszta, R. A. Barrett, and L. B. Gower, J. Cryst. Growth 310, 2938 (2008).

    Article  CAS  Google Scholar 

  2. S. J. Homeijer, R. A. Barrett, and L. B. Gower, Cryst. Growth Des. 10, 1040 (2010).

    Article  CAS  Google Scholar 

  3. J. J. Shi, J. J. Li, Y. F. Zhu, F. Wei, and X. R. Zhang, Anal. Chim. Acta. 466, 69 (2002).

    Article  CAS  Google Scholar 

  4. J. Massone, in Technology and Uses of Barium and Strontium Compounds, Proceedings of the 5th Industrian Minerals International Congress, Metals Bulletin, Ed. by M. B. Coope and G. M. Clarke (Madrid, Spain, 1982).

  5. J. J. Macketta, Encyclopedia of Chemical Processing and Design (Marcel Dekker, New York, 1976).

    Google Scholar 

  6. L. K. Templeton and J. A. Pask, J. Am. Ceram. Soc. 42, 212 (1959).

    Article  CAS  Google Scholar 

  7. B. Allen, S. C. Lin, R. Semait, D. Luss, and J. T. Richardson, in A Continuous Coprecipitation Process for the Production of 1-2-3 Precursors, Proceedings of the American Institute of Chemical Engineers National Meeting, Ed. by T. O. Mensah (New York, 1992).

  8. M. T. Buscaglia, V. Buscaglia, and R. Alessio, Chem. Mater. 19, 711 (2007).

    Article  CAS  Google Scholar 

  9. M. H. Cao, X. L. Wu, X. Y. He, and C. W. Hu, Langmuir 21, 6093 (2005).

    Article  CAS  Google Scholar 

  10. M. Balz, H. A. Therese, M. Kappl, L. Nasdala, W. Hofmeister, H. J. Butt, and W. Tremel, Langmuir 21, 3981 (2005).

    Article  CAS  Google Scholar 

  11. D. Rautaray, S. R. Sainkar, and M. Sastry, Langmuir 19, 888 (2003).

    Article  CAS  Google Scholar 

  12. G. S. Guo, F. B. Gu, Z. H. Wang, and H. Y. Guo, Chin. Chem. Lett. 16, 1101 (2005).

    CAS  Google Scholar 

  13. Q. Huang, L. Gao, Y. Cai, and F. Aldinger, Chem. Lett. 33, 290 (2004).

    Article  CAS  Google Scholar 

  14. L. G. Shi and F. L. Du, Mater. Lett. 61, 3262 (2007).

    Article  CAS  Google Scholar 

  15. F. Gu, Z. H. Wang, D. M. Han, G. S. Guo, and H. Y. Guo, Cryst. Growth Des. 7, 1452 (2007).

    Article  CAS  Google Scholar 

  16. S. Z. Li, H. Zhang, J. Xu, and D. Yang, Mater. Lett. 59, 420 (2005).

    Article  CAS  Google Scholar 

  17. J. Kuther, M. Bartz, R. Seshadri, G. B. M. Vaughan, and W. Tremel, J. Mater. Chem. 11, 503 (2001).

    Article  CAS  Google Scholar 

  18. S. Reddy, D. Rautaray, S. R. Sainkar, and M. Sastry, Bull. Mater. Sci. 26, 283 (2003).

    Article  CAS  Google Scholar 

  19. X. H. Guo and S. H. Yu, Cryst. Growth Des. 7, 354 (2007).

    Article  CAS  Google Scholar 

  20. S. H. Yu, H. Colfen, K. Tauer, and M. Antonietti, Nature Mater. 4, 51 (2005).

    Article  CAS  Google Scholar 

  21. E. Bittarello and D. Aquilano, Eur. J. Mineral. 19, 345 (2007).

    Article  CAS  Google Scholar 

  22. L. M. Qi, J. M. Ma, H. M. Cheng, and Z. G. Zhao, J. Phys. Chem. B 101, 3460 (1997).

    Article  CAS  Google Scholar 

  23. M. G. Ma, Y. J. Zhu, J. F. Zhu, and Z. L. Xu, Mater. Lett. 61, 5133 (2007).

    Article  CAS  Google Scholar 

  24. S. Lv, P. Li, H. Sheng, and W. D. Sun, Mater. Lett. 61, 4250 (2007).

    Article  CAS  Google Scholar 

  25. K. Govender, D. S. Boyle, P. B. Kenway, and P. O. Brien, J. Mater. Chem. 14, 2575 (2004).

    Article  CAS  Google Scholar 

  26. H. Colfen and M. Antonietti, Angew. Chem. Int. Ed. 44, 5576 (2005).

    Article  Google Scholar 

  27. X. H. Guo and S. H. Yu, Cryst. Growth Des. 7, 354 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Jiang, J., Bao, Z. et al. Synthesis of barium and strontium carbonate crystals with unusual morphologies using an organic additive. Russ. J. Phys. Chem. 87, 2239–2245 (2013). https://doi.org/10.1134/S0036024413130153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413130153

Keywords

Navigation