Skip to main content
Log in

Effect of Alkyl, Aryl, and meso-Aza Substitution on the Thermal Stability of BODIPY

  • Coordination Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of peripheral alkyl, aryl, and meso-aza substitution on the thermal stability of BODIPYs in an argon or oxygen atmosphere has been analyzed using thermogravimetric study results. It has been shown that an increase in the length of 2,6-alkyl substituents to seven carbon atoms is accompanied by the growth of BODIPY thermal stability by 80°C. The greatest increase in the destruction temperature of BODIPY (by 100°C) is attained via the introduction of phenyl groups in the 1,3,5,7-positions of its dipyrromethenmethene framework. meso-Aza substitution does not almost produce any effect on the thermal stability of BODIPY dyes. The BODIPY destruction beginning temperature decreases by 60–90°C in the presence of air oxygen. The thermal stability of BODIPY tends to decrease with reducing degree and symmetry of alkyl substitution in the dipyrromethene framework. A lower thermal stability of BODIPY in comparison with zinc(II) dipyrromethenates is due to the participation of fluorine atoms in intramolecular redox processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Antina, E. V. Rumyantsev, G. B. Guseva, et al., in Advances of Porphyrin Chemistry (Izd-vo NII Khimii, St. Petersburg, 2007), vol. 5 [in Russian].

  2. E. V. Rumyantsev, G. B. Guseva, and E. V. Anitna, Zh. Fiz. Khim. 79, 219 (2005).

    Google Scholar 

  3. G. B. Guseva, E. V. Antina, A. S. Semeikin, et al., Russ. J. Phys. Chem. 80, 98 (2006).

    Article  CAS  Google Scholar 

  4. G. B. Guseva, E. V. Antina, and A. I. Vyugin, J. Therm. Anal. Calorim. 92, 735 (2008).

    Article  CAS  Google Scholar 

  5. G. B. Guseva, E. V. Antina, A. C. Semeikin, et al., Zh. Obshch. Khim. 72, 1391 (2002).

    Google Scholar 

  6. N. Sh. Lebedeva, E. V. Antina, M. B. Berezin, et al., Zh. Fiz. Khim. 74, 1165 (2000).

    CAS  Google Scholar 

  7. A. S. Semeikin, M. B. Berezin, O. M. Chernova, et al., Izv. Akad. Nauk, Ser. Khim., No. 8, 1712 (2003).

    Google Scholar 

  8. E. V. Rumyantsev, G. B. Guseva, E. V. Antina, et al., Zh. Obshch. Khim. 76, 143 (2006).

    Google Scholar 

  9. O. M. Chernova, M. B. Berezin, and E. V. Antina, Zh. Fiz. Khim. 77, 1002 (2003).

    CAS  Google Scholar 

  10. E. V. Rumyantsev, E. V. Antina, and M. B. Berezin, Zh. Fiz. Khim. 80, 1244 (2006).

    Google Scholar 

  11. E. V. Rumyantsev and E. V. Antina, Zh. Obshch. Khim. 77, 1363 (2007).

    Google Scholar 

  12. A. Loudet and K. Burgess, Chem. Rev. 107, 4891 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. N. Boens, V. Leen, and W. Dehaen, Chem. Soc. Rev. 41, 1130 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. M. Benstead, G. H. Mehl, and R. W. Boyle, Tetrahedron 67, 3573 (2011).

    Article  CAS  Google Scholar 

  15. A. Kamkaew, S. H. Lim, H. B. Lee, et al., Chem. Soc. Rev. 42, 77 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. R. Ziessel, G. Ulrich, and A. Harriman, New J. Chem. 31, 496 (2007).

    Article  CAS  Google Scholar 

  17. E. V. Antina, G. B. Guseva, E. V. Rumyantsev, and N. A. Dudina, Zh. Obshch. Khim. 79, 1900 (2009).

    CAS  Google Scholar 

  18. S. L. Yutanova, M. B. Berezin, A. S. Semeikin, et al., Zh. Obshch. Khim. 83, 492 (2013).

    Google Scholar 

  19. E. V. Antina, M. B. Berezin, N. A. Dudina, et al., Zh. Neorg. Khim. 59, 1427 (2014).

    Google Scholar 

  20. G. B. Guseva, L. A. Antina, E. V. Antina, and A. I. Vyugin, Thermochim. Acta 544, 54 (2012).

    Article  CAS  Google Scholar 

  21. E. V. Antina, N. A. Dudina, M. B. Berezin, et al., Zh. Neorg. Khim. 61, 836 (2016).

    Google Scholar 

  22. R. Gresser, A. Hoyer, M. Hummert, et al., Dalton Trans. 40, 3476 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kritskaya.

Additional information

Original Russian Text © N.A. Bumagina, A.Yu. Kritskaya, E.V. Antina, M.B. Berezin, A.I. V’yugin, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 10, pp. 1310–1316.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bumagina, N.A., Kritskaya, A.Y., Antina, E.V. et al. Effect of Alkyl, Aryl, and meso-Aza Substitution on the Thermal Stability of BODIPY. Russ. J. Inorg. Chem. 63, 1326–1332 (2018). https://doi.org/10.1134/S0036023618100030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618100030

Keywords

Navigation