Skip to main content
Log in

Aluminum Antimonide Thin Films: Structure and Properties

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Protocols for sputtering stoichiometric aluminum antimonide thin films were developed by calculating aluminum and antimony vapor condensation flux densities. Aluminum and antimony were sputtered separately. The high chemical reactivity of nanosized aluminum and antimony films made it possible to reduce the synthesis temperature considerably (far below the melting point of the compound). The synthesis involved thermal annealing. The reaction between aluminum and antimony films started at 470°С. Optimal AlSb formation parameters comprise annealing at 540°С for at least 10 h. Film synthesis steps were studied by X-ray powder diffraction, optical, electron, and atomic force microscopy. The composition was monitored by energy dispersive X-ray spectra. The films were found to have hole conductivity; the 300-K charge density and charge mobility in the films are 1 × 1019 cm–3 and 1 × 102 cm2/(V s), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Gorelik and M. Ya. Dashevskii, The Materials Science of Semiconductors and Insulators (MISIS, Moscow, 2003) [in Russian].

    Google Scholar 

  2. V. V. Pasynkov and V. S. Sorokin, Electronic Engineering Materials (Vysshaya Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  3. S. F. Marenkin, A. D. Izotov, I. V. Fedorchenko, and V. M. Novotortsev, Russ. J. Inorg. Chem. 60, 295 (2015).

    Article  CAS  Google Scholar 

  4. S. V. Murashov, V. G. Yarzhemsky, and A. D. Izotov, Russ. J. Inorg. Chem. 52, 89 (2017).

    Google Scholar 

  5. V. G. Yarzhemsky, S. V. Murashov, and A. D. Izotov, Russ. J. Inorg. Chem. 53, 1131 (2017).

    CAS  Google Scholar 

  6. T. Singh and K. Bedi, Thin Solid Films 12, 111 (1998).

    Article  Google Scholar 

  7. C. Raisin, L. Lessabatere, C. Albert, et al., Solid State Commun. 61, 17 (1987).

    Article  CAS  Google Scholar 

  8. S. K. Sharma, Y. Tomokio, S. Sing, et al., J. Mater. Sci. Lett. 20, 2193 (2001).

    Article  CAS  Google Scholar 

  9. The Encyclopedia of Semiconductor Materials Technology, Ed. by K. A. Dzhekson and V. Shreder (Vodolei, Voronezh, 2004), Vol. 1 [in Russian].

  10. Physicochemical Properties of Semiconductors. Handbook, Ed. by A. Ya. Novoselova and V. B. Lazarev (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  11. V. E. Kutny, A. V. Rybka, A. S. Abyson, et al., Nuct. Instrum. Methods Phys. Res., Sect. A 458, 448 (2001).

    Article  CAS  Google Scholar 

  12. R. J. Stirn and W. M. Becker, J. Appl. Phys. 37, 3616 (1996).

    Article  Google Scholar 

  13. K. M. Yu, A. J. Moll, N. Chan, et al., Appl. Phys. Lett. 66, 2406 (1995).

    Article  CAS  Google Scholar 

  14. J. J. Loves, J. Appl. Phys. 27, 777 (1956).

    Article  Google Scholar 

  15. J. J. Wysocki and P. Rappaport, J. Appl. Phys. 31, 571 (1960).

    Article  CAS  Google Scholar 

  16. E. R. Classer, T. A. Kennedy, B. R. Bennet, et al., Phys. Rev. B: Condens. Matter. 273–274, 811 (1999).

    Google Scholar 

  17. R. M. Biefeld, A. A. Allerman, and S. R. Kurts, J. Cryst. Growth 174, 593 (1997).

    Article  CAS  Google Scholar 

  18. H.-M. Kagaya and T. Soma, Phys. Status Solidi B 134, 105 (1986).

    Article  Google Scholar 

  19. L. Mathiiev, T. Annie, H. Gibart, and G. Verie, J.Cryst. Growth 48, 387 (1980).

    Article  Google Scholar 

  20. W. Chen, L. Feng, Z. Lei, et al., Int. J. Mod. Phys. B 22, 2275 (2008).

    Article  CAS  Google Scholar 

  21. S. M. Patel and A. M. Biradel, Ind. J. Appl. Phys 21, 418 (1983).

    CAS  Google Scholar 

  22. H. Song, Wu. Lili, H. Syeng, et al., Int. J. Mod. Phys. B 25, 1747 (2011).

    Article  CAS  Google Scholar 

  23. K. Lal, A. K. Srivastava, S. Singh, et al., J. Mater. Sci. Lett. 22, 515 (2003).

    Article  CAS  Google Scholar 

  24. A. N. Nesmeyanov, Vapor Pressure of Chemical Elements (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  25. A. V. Kochura, S. F. Marenkin, A. D. Izotov, et al., Neorg. Mater. 51, 754 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Marenkin.

Additional information

Original Russian Text © I. Ril’, A.V. Kochura, S.F. Marenkin, M.G. Vasil’ev, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 9, pp. 1087–1091.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ril’, I., Kochura, A.V., Marenkin, S.F. et al. Aluminum Antimonide Thin Films: Structure and Properties. Russ. J. Inorg. Chem. 63, 1117–1121 (2018). https://doi.org/10.1134/S0036023618090139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618090139

Navigation