Skip to main content
Log in

Degradable channels, less noisy channels, and quantum statistical morphisms: An equivalence relation

  • Information Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

Two partial orderings among communication channels, namely “being degradable into” and “being less noisy than,” are reconsidered in the light of recent results about statistical comparisons of quantum channels. Though our analysis covers at once both classical and quantum channels, we also provide a separate treatment of classical noisy channels and show how in this case an alternative self-contained proof can be constructed, with its own particular merits with respect to the general result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilde, M.M., Quantum Information Theory, Cambridge, UK: Cambridge Univ. Press, 2013.

    Book  MATH  Google Scholar 

  2. Cohen, J.E., Kemperman, J.H.B., and Zbăganu, G., Comparisons of Stochastic Matrices, with Applications in Information Theory, Statistics, Economics, and Population Sciences, Boston: Birkhäuser, 1998.

    MATH  Google Scholar 

  3. König, R., Renner, R., and Schaffner, C., The Operational Meaning of Min-and Max-Entropy, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 9, pp. 4337–4347.

    Article  MathSciNet  Google Scholar 

  4. Bergmans, P.P., Random Coding Theorem for Broadcast Channels with Degraded Components, IEEE Trans. Inform. Theory, 1973, vol. 19, no. 2, pp. 197–207.

    Article  MathSciNet  Google Scholar 

  5. Körner, J. and Marton, K., Comparison of Two Noisy Channels, Topics in Information Theory (2nd Colloq., Keszthely, Hungary, 1975), Csiszár, I. and Elias, P., Eds., Colloq. Math. Soc. János Bolyai, vol. 16, Amsterdam: North-Holland, 1977, pp. 411–423.

    Google Scholar 

  6. El Gamal, A.A., Broadcast Channels with and without Feedback, Proc. 11th Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, Nov. 7–9, 1977, Chan, S.-P., Ed., New York: IEEE, 1978, pp. 180–183.

    Google Scholar 

  7. Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge: Cambridge Univ. Press, 2011, 2nd ed.

    Book  MATH  Google Scholar 

  8. Watanabe, S., Private and Quantum Capacities of More Capable and Less Noisy Quantum Channels, Phys. Rev. A, 2012, vol. 85, no. 1, p. 012326.

    Article  Google Scholar 

  9. Blackwell, D., Equivalent Comparisons of Experiments, Ann. Math. Statist., 1953, vol. 24, no. 2, pp. 265–272.

    Article  MathSciNet  MATH  Google Scholar 

  10. Torgersen, E.N., Comparison of Statistical Experiments, Cambridge: Cambridge Univ. Press, 1991.

    Book  MATH  Google Scholar 

  11. Liese, F. and Miescke, K.-J., Statistical Decision Theory: Estimation, Testing, and Selection, New York: Springer, 2008.

    Book  MATH  Google Scholar 

  12. Buscemi, F., Keyl, M., D’Ariano, G.M., Perinotti, P., and Werner, R.F., Clean Positive Operator Valued Measures, J. Math. Phys., 2005, vol. 46, no. 8, p. 82109.

    Article  MathSciNet  MATH  Google Scholar 

  13. Shmaya, E., Comparison of Information Structures and Completely Positive Maps, J. Phys. A, 2005, vol. 38, no. 44, pp. 9717–9727.

    Article  MathSciNet  MATH  Google Scholar 

  14. Chefles, A., The Quantum Blackwell Theorem and Minimum Error State Discrimination, arXiv:0907. 0866v4 [quant-ph], 2009.

    Google Scholar 

  15. Buscemi, F., Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency, Comm. Math. Phys., 2012, vol. 310, no. 3, pp. 625–647.

    Article  MathSciNet  MATH  Google Scholar 

  16. Buscemi, F., Datta, N., and Strelchuk, S., Game-Theoretic Characterization of Antidegradable Channels, J. Math. Phys., 2014, vol. 55, no. 9, p. 092202.

    Article  MathSciNet  MATH  Google Scholar 

  17. Buscemi F. and Datta, N., Equivalence between Divisibility and Monotonic Decrease of Information in Classical and Quantum Stochastic Processes, Phys. Rev. A, 2016, vol. 93, no. 1, p. 012101.

    Article  MathSciNet  Google Scholar 

  18. Matsumoto, K., An Example of a Quantum Statistical Model Which Cannot Be Mapped to a Less Informative One by Any Trace Preserving Positive Map, arXiv:1409.5658 [quant-ph, math.ST], 2014.

    Google Scholar 

  19. Heinosaari, T., Jivulescu, M.A., Reeb, D., and Wolf, M.M., Extending Quantum Operations, J. Math. Phys., 2012, vol. 53, no. 10, p. 102208.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jenčová, A., Comparison of Quantum Binary Experiments, Rep. Math. Phys., 2012, vol. 70, no. 2, pp. 237–249.

    Article  MathSciNet  MATH  Google Scholar 

  21. Braunstein, S.L., D’Ariano, G.M., Milburn, G.J., and Sacchi, M.F., Universal Teleportation with a Twist, Phys. Rev. Lett., 2000, vol. 84, no. 15, pp. 3486–3489.

    Article  Google Scholar 

  22. Raginsky, M., Shannon Meets Blackwell and Le Cam: Channels, Codes, and Statistical Experiments, in Proc. 2011 IEEE Int. Sympos. on Information Theory (ISIT’2011), St. Petersburg, Russia, July 31–Aug. 5, 2011, pp. 1220–1224.

    Chapter  Google Scholar 

  23. Buscemi, F., All Entangled Quantum States are Nonlocal, Phys. Rev. Lett., 2012, vol. 108, no. 20, p. 200401.

    Article  Google Scholar 

  24. Buscemi, F., Complete Positivity, Markovianity, and the Quantum Data-Processing Inequality, in the Presence of Initial System-Environment Correlations, Phys. Rev. Lett., 2014, vol. 113, no. 14, p. 140502.

    Article  Google Scholar 

  25. Buscemi, F., Fully Quantum Second-Law-like Statements from the Theory of Statistical Comparisons, arXiv:1505.00535 [quant-ph], 2014.

    Google Scholar 

  26. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 2013, 2nd ed.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Buscemi.

Additional information

Original Russian Text © F. Buscemi, 2016, published in Problemy Peredachi Informatsii, 2016, Vol. 52, No. 3, pp. 3–16.

Supported in part by the JSPS KAKENHI, grant no. 26247016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buscemi, F. Degradable channels, less noisy channels, and quantum statistical morphisms: An equivalence relation. Probl Inf Transm 52, 201–213 (2016). https://doi.org/10.1134/S0032946016030017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946016030017

Navigation