Skip to main content
Log in

Electrical and Magnetic Properties of the Binary Heterogeneous Mixture Model

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper presents a comparative analysis of the mixture models used in radio physics to describe the effective properties of composite materials and formulates the limits of their applicability and criteria for checking their correctness. Two of the most general models have been chosen, which take into account the transformation of the composite structure upon changes in its composition. The correspondence of the chosen model to the experimental results is considered. The effect of the composite structure on the frequency of the maximum and the shape of its dielectric absorption line is shown. The analysis shows that the complication of the models in comparison with those already known and an increase in the number of parameters determined from the experiment is inappropriate at the existing level of the composition and material parameters (permittivity and permeability) measuring error and due to a significant contribution of the size and surface effects, which is not taken into account in quasi-static mixture models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. C. Bonifasi-Lista and E. Cherkaev, “Electrical impedance spectroscopy as a potential tool for recovering bone porosity,” Phys. Med. Biol. 54, 3063–3082 (2009).

    Article  CAS  Google Scholar 

  2. F. Carrique, F. J. Arroyo, M. L. Jimenez, and A. V. Delgado, “Dielectric response of concentrated colloidal suspensions,” J. Chem. Phys. 118, No. 4, 1945–1956 (2003).

    Article  CAS  Google Scholar 

  3. P. W. J. Glover, “Archie’s law—a reappraisal,” Solid Earth 7, 1157–1169 (2016).

    Article  Google Scholar 

  4. P. Cosenza, A. Ghorbani, C. Camerlynck, F. Rejibal, R. Guérin, and A. Tabbagh, “Effective medium theories for modeling the relationships between electromagnetic properties and hydrological variables in geomaterials: a review,” Near Surf. Geophys. 7, 563–578 (2009).

    Article  Google Scholar 

  5. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composites (Energiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  6. V. I. Loginov and V. G. Kucherov, “Thermal conductivity of homogeneous mixtures,” Prikl. Mekh. Tekh. Fiz. 32, No. 4, 120–125 (1991).

    Google Scholar 

  7. J. G. Berryman, “Effective medium theory for elastic composites,” in Elastic Wave Scattering and Propagation, Ed. by V.K. Varadan and V.V. Varadan (Ann Arbor, 1982).

    Google Scholar 

  8. G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook (Cambridge University, Cambridge, 2009).

    Book  Google Scholar 

  9. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. 203, 359–371 (1904).

    Google Scholar 

  10. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, i. dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys., 636–664 (1935).

  11. L. Landau and E. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960).

    Google Scholar 

  12. H. Looyenga, “Dielectric constants of mixtures,” Phys. 31, 401–406 (1965).

    CAS  Google Scholar 

  13. V. I. Odelevskii, Candidate’s Dissertation (1947).

  14. J. A. Reynolds and J. M. Hough, “Formulae for dielectric constant of mixtures,” Proc. Phys. Soc. B 70, 769–780 (1957).

    Article  Google Scholar 

  15. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (The institution of Electrical Engineers, London, 1999), p. 296.

  16. M. Scheller, C. Jansen, and M. Koch, “Applications of effective medium theories in the terahertz regime,” in Recent Optical and Photonic Technologies, Ed. by K. Y. Kim (InTech, 2010), pp. 231–250.

    Google Scholar 

  17. C. Brosseau, “Modelling and simulation of dielectric heterostructures: A physical survey from an historical perspective,” J. Phys. D Appl. Phys. 39, 1277–1290 (2006).

    Article  CAS  Google Scholar 

  18. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys. 33, No. 10, 3125–3131 (1962).

    Article  CAS  Google Scholar 

  19. D. J. Bergman, “Dielectric constant of a two-component granular composite: A practical scheme for calculating the pole spectrum,” Phys. Rev. 19, No. 4, 2359–2368 (1979).

    Article  CAS  Google Scholar 

  20. D. J. Bergman, “Bounds for the complex dielectric constant of a two component material,” Phys. Rev. B 23, 3058–3065 (1981).

    Article  Google Scholar 

  21. R. Pal, Electromagnetic, Mechanical, and Transport Properties of Composite Materials (CRC, 2015).

    Google Scholar 

  22. E. Sancaktar and B. Lan, “Electrically conductive epoxy adhesives,” Polymers 3, 427 (2011).

    Article  CAS  Google Scholar 

  23. Ye. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders,” Eur. Polym. J. 38, 1887–1897 (2002).

    Article  CAS  Google Scholar 

  24. K. Ghosh and R. Fuchs, “Spectral theory for two-component porous media,” Phys Rev. B 38, No. 8, 5222–5236 (1988).

    Article  CAS  Google Scholar 

  25. C. N. Starostenko and K. N. Rozanov, “Simple calibration method for magnetic permeability measurements in a short-circuited strip cell,” Radiotekh. Electron. 58, No. 10, 1–9 (2013).

    Google Scholar 

  26. E. Tuncer, “Geometrical description in binary composites and spectral density representation,” Materials 3, 585–613 (2010).

    Article  Google Scholar 

  27. A. V. Goncharenko, V. Z. Lozovski, and E. F. Venger, “Lichtenecker’s equation: applicability and limitations,” Opt. Commun. 174, 19–32 (2000).

    Article  CAS  Google Scholar 

  28. A. K. Semenov, “On applicability of differential mixing rules for statistically homogeneous and isotropic dispersions,” J. Phys. Commun. 2, 035045 (2018).

    Article  CAS  Google Scholar 

  29. S. S. Maklakov, A. N. Lagarkov, S. A. Maklakov, Y. A. Adamovich, D. A. Petrov, K. N. Rozanov, I. A. Ryzhikov, A. Yu. Zarubina, K. V. Pokholok, and D. S. Filimonov, “Corrosion-resistive magnetic powder Fe@SiO2 for microwave applications,” J. Alloys Compd. 706, 267–273 (2017).

    Article  CAS  Google Scholar 

  30. S. N. Starostenko, K. N. Rozanov, A. O. Shiryaev, and A. N. Lagarkov, “A technique to retrieve high-frequency permeability of metals from constitutive parameters of composites with metal inclusions of arbitrary shape, estimate of the microwave permeability of nickel,” PIER M. 76, 143–155 (2018).

    Article  Google Scholar 

  31. S. N. Starostenko, K. N. Rozanov, A. O. Shiryaev, A. N. Lagarkov, and A. N. Shalygin, “Determination of sendust intrinsic permeability from microwave constitutive parameters of composites with sendust spheres and flakes,” J. Appl. Phys. 121, 245107 (2017).

    Article  CAS  Google Scholar 

  32. K. N. Rozanov, D. A. Petrov, A. N. Maratkanova, A. A. Chulkina, and C. F. Lomayeva, “Microwave properties of powders produced by high-energy milling of iron with paraffin,” Phys. Met. Metallogr. 115, 642–649 (2014).

    Article  Google Scholar 

  33. P. A. Kuznetsov, M. V. Staritsyn, E. A. Samodelkin, and V. N. Klimov, “Study of radioengineering parameters of powders of an AMAG-200 amorphous soft magnetic alloy,” Phys. Met. Metallogr. 119, 436–440 (2018).

    Article  CAS  Google Scholar 

  34. E. Meyer, H. Scmitt, and H-Y. Severin, “Dielektrizitatskonstante und Permeabilitat kunstlicher Dielectrica bei 3 cm Wellenlange,” Z. Phys. 8, 257–263 (1956).

    CAS  Google Scholar 

  35. S. N. Starostenko and K. N. Rozanov, “Microwave screen with magnetically controlled attenuation,” Prog. Electromagn. Res. 99, 405–426 (2009).

    Article  Google Scholar 

  36. A. N. Lagarkov and K. N. Rozanov, “High-frequency behavior of magnetic composites,” J. Mag. Magn. Mater. 321, No. 14, 2082–2092 (2009).

    Article  CAS  Google Scholar 

  37. F. Ollendorff, “Magnetostatik der Massekerne,” Arch. f. Eledtrotech. 25, 436–447 (1931).

    Google Scholar 

  38. D. Polder and J. H. van Santen, “The effective permeability of mixtures of solids,” Physica 12, 257–270 (1946).

    Article  Google Scholar 

  39. C. J. Das and D. K. Das-Gupta, “Inorganic ceramic/polymer ferroelectric composite electrets,” IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996).

    Article  Google Scholar 

  40. Y. Rao, J. Qu, T. Marinis, and C. P. Wong, “A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory,” IEEE Trans. Compon. Packag. Technol. 23, 680 (2000).

    Article  CAS  Google Scholar 

  41. O. Wiener, “Der Abhandlungen der Mathematisch-Physischen Klasse der Konigl,” Sachsischen Gesellschaft der Wissenschaften 32, 509 (1912).

    Google Scholar 

  42. R. Moore, “Development of a volume fraction scaling function for demagnetization factors in effective media theories of magnetic composites,” AIP Adv. 9, 015115-14 (2019).

    Article  CAS  Google Scholar 

  43. W. T. Doyle and I. S. Jacobs, “Effective cluster model of dielectric enhancement in metal-insulator composites,” J. Appl. Phys. 71, No. 8, 3927 (1992).

    Google Scholar 

  44. S. N. Starostenko, K. N. Rozanov, V. Bovtun, and A. O. Shiryaev, “A mixing formula accounting for inversion of matrix structure,” AIP Adv. 10, 015115 (2020).

    Article  CAS  Google Scholar 

  45. M. H. Boyle, “The electrical properties of heterogeneous mixtures containing an oriented spheroidal dispersed phase,” Colloid Polym. Sci. 263, 51–57 (1985).

    Article  CAS  Google Scholar 

  46. A. Sihvola, “Dielectric polarization and particle shape effects,” J. Nanomater. (2007). https://doi.org/10.1155/2007/45090

  47. A. Moroz, “Depolarization field of spheroidal particles,” J. Opt. Soc. Am. B 26, 517–527 (2009).

    Article  CAS  Google Scholar 

  48. W. R. Tinga, W. A. G. Voss, and F. Blossey, “Generalized approach to multiphase dielectric mixture theory,” J. Appl. Phys. 44, No. 9, 3897–3902 (1973).

    Article  Google Scholar 

  49. R. W. Sillars, “The properties of a dielectric containing semiconducting particles of various shapes,” J. Inst. Electr. Eng. 80, 378–394 (1937).

    Google Scholar 

  50. C. J. F. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), p. 377.

    Google Scholar 

  51. E. H. Kerner, “The elastic and thermoelastic properties of composite media,” Proc. Phys. Soc. Sect. B 69, 808–813 (1956).

    Article  Google Scholar 

  52. T. Hanai, “Dielectric theory on the interfacial polarization for two phase mixtures,” Bull. Inst. Chem. Res. 39, 341–367 (1961).

    Google Scholar 

  53. K. Lichtenecker and K. Rother, “Die herleitung des logarithmischen mischungsgesetzes aus allgemeinen prinzipien der stationären strömung,” Phys. Zeitschr. 32, 255–260 (1931).

    Google Scholar 

  54. M. Rother, Über das Konkurrenzverhalten von Dielektrika bei der Mikrowellenerwärmung (KIT, 2010), p. 196.

    Google Scholar 

  55. A. Hunt and R. Ewing, Percolation Theory for Flow in Porous Media (Springer, Switzerland, 2005).

    Book  Google Scholar 

  56. G. C. Topp, J. L. Davis, and A. P. Annan, “Electromagnetic determination of soil water content: Measurement in coaxial transmission lines,” Water Resour. Res. 16, 574–582 (1980).

    Article  Google Scholar 

  57. H. M. Musal, J. H. T. Hahn, and G. G. Bush, “Validation of mixture equations for dielectric-magnetic composites,” J. Appl. Phys. 63, No. 8, 3768–3770 (1988).

    Article  CAS  Google Scholar 

  58. L. Yuan, B. Wang, Y. Xu, and Q. Wu, “Calculating the effective permittivity and permeability of composites based on the dilution process model,” Adv. Comp. Lett. 25, 189–193 (2017).

    Google Scholar 

  59. C. Boned and J. Peyrelasse, “Some comments on the complex permittivity of ellipsoids dispersed in continuum media,” J. Phys. D: Appl. Phys. 16, 1777–1784 (1983).

    Article  Google Scholar 

  60. A. L. Garner, G. J. Parker, and D. L. Simone, “Predicting effective permittivity of composites containing conductive inclusions at microwave frequencies,” AIP Adv. 2, 032109-6 (2012).

    Article  CAS  Google Scholar 

  61. V. A. Markel, “Introduction to the Maxwell Garnett approximation: tutorial,” J. Opt. Soc. Amer. A 33, No. 7, 2237–2255 (2016).

    Article  Google Scholar 

  62. S. S. Jamaian and T. G. Mackay, “On limitations of the Bruggeman formalism for inverse homogenization,” J. Nanophoton. 4 (2010). https://doi.org/10.1117/1.3460908

  63. A. E. Bussian, “Electrical conductance in a porous media,” Geophysics 48, 1258–1268 (1983).

    Article  Google Scholar 

  64. A. Sihvola, “Homogenization principles and effect of mixing on dielectric behavior,” Photon. Nanostruct. Fund. Appl. 11, 364–373 (2013).

    Article  Google Scholar 

  65. K. N. Rozanov, M. Y. Koledintseva, and J. Drewniak, “A mixing rule for predicting frequency dependence of material parameters in magnetic composites,” J. Magn. Magn. Mater. 324, 1063–1066 (2012).

    Article  CAS  Google Scholar 

  66. D. S. McLachlan, A. Priou, I. Chenerie, E. Isaac, and F. Henry, “Modeling of the permittivity of composite materials with a general effective medium equation,” Waves Appl. 6, 1099–1131 (1992).

    Google Scholar 

  67. M. F. Causley and P. G. Petropoulos, “On the time-domain response of Havriliak–Negami dielectrics,” IEEE Trans. Ant. Prop. 61, 3182–3189 (2013).

    Article  Google Scholar 

  68. E. Cherkaev and D. Zhang, “Coupling of the effective properties of a random mixture through the reconstructed spectral representation,” Physica B 338, 16–23 (2003).

    Article  CAS  Google Scholar 

  69. R. Simpkin, “Derivation of Lichtenecker’s logarithmic mixture formula from Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. 58, No. 3, 545–550 (2010).

    Article  Google Scholar 

  70. E. Cherkaev, M.-J. Ou Yvonne, “Dehomogenization: reconstruction of moments of the spectral measure of the composite,” Inverse Probl. 24, 065008–065017 (2008).

    Article  Google Scholar 

  71. S. F. Lomaeva, A. N. Maratkanova, A. V. Syugaev, K. N. Rozanov, and D. A. Petrov, “Structural-phase composition, structure of the surface, magnetostatic and microwave properties of powders produced by milling of Fe in polystyrene with additions of surfactants,” Phys. Met. Metallogr. 116, No. 8, 760–767 (2015).

    Article  Google Scholar 

  72. H. Heuermann and B. Schiek, “Procedures for the determination of the scattering parameters for network analyzer calibration,” IEEE Trans. Inst. Meas. 42, No. 2, 528–531 (1993).

    Article  Google Scholar 

Download references

Funding

The partial support by the Russian Foundation for Basic Research (project no. 20-52-53020) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Starostenko.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starostenko, S.N., Rozanov, K.N. & Lagar’kov, A.N. Electrical and Magnetic Properties of the Binary Heterogeneous Mixture Model. Phys. Metals Metallogr. 122, 323–344 (2021). https://doi.org/10.1134/S0031918X21040104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21040104

Keywords:

Navigation