Skip to main content
Log in

A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo–B–(N), Cr–B–(N) and Ti–B–(N) systems

  • Strength and Plasticity
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

M–B–(N) (M = Mo, Cr, Ti) coatings were obtained by the magnetron sputtering of MoB, CrB2, TiB, and TiB2 targets in argon and in gaseous mixtures of argon with nitrogen. The structure and composition of the coatings have been investigated using scanning electron microscopy, glow-discharge optical emission spectroscopy, and X-ray diffraction. The mechanical and tribological properties of the coatings have been determined by nanoindentation, scratch-testing, and ball-on-disk tribological tests. The experiments on estimating the oxidation resistance of coatings were carried out in a temperature range of 600–1000°С. A distinctive feature of TiB2 coatings was their high hardness (61 GPa). The Cr–B–(N) coatings had high maximum oxidation resistance (900°С (CrB2) and 1000°С (Cr–B–N)) and possessed high resistance to the diffusion of elements from the metallic substrate up to a temperature of 1000°С. The Mo–B–N coatings were significantly inferior to the Ti–B–(N) and Cr–B–(N) coatings in their mechanical properties and oxidation resistance, as well as had а tendency to oxidize in air atmosphere after long exposure at room temperature. All of the coatings with nitrogen possessed a low coefficient of friction (in a range of 0.3–0.5) and low relative wear ((0.8–1.2) × 10–6 mm3 N–1 m–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wallgram and U. Schleinkofer, “Synthesis, structure, and behavior of a new CVD TiB2 coatings with extraordinary properties for high performance applications,” Proc. 17th Plansee Seminar, 2009, vol. 2, pp. 32/1–32/14.

  2. S. Taktak, “Tribological behavior of borided bearing steels at elevated temperatures,” Surf. Coat. Technol. 201, 2230–2239 (2006).

    Article  Google Scholar 

  3. H. B. Hassan and Z. A. Hamid, “Electroless Ni–B supported on carbon for direct alcohol fuel cell applications,” Int. J. Hydrogen Energy 36, 849–856 (2011).

    Article  Google Scholar 

  4. L. Hejun, Y. Dongjia, F. Qiangang, L. Lei, Zh. Yulei, Y. Xiyuan, W. Yongjie, and L. Hailiang, “Anti-oxidation and ablation properties of carbon/carbon composites infiltrated by hafnium boride,” Carbon 52, 418–426 (2013).

    Article  Google Scholar 

  5. R. Ribeiro, S. Ingole, M. Usta, C. Bindal, A. H. Ucisik, and H. Liang, “Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions,” Wear 262, 1380–1386 (2007).

    Article  Google Scholar 

  6. A. A. Goncharov, P. I. Ignatenko, V. V. Petukhov, V. A. Konovalov, G. K. Volkova, V. A. Stupak, and V. A. Glazunova, “Composition, structure and properties of tantalum boride nanostructured films,” Tech. Phys. 51, 1340–1343 (2006).

    Article  Google Scholar 

  7. A. A. Goncharov, V. V. Petukhov, D. N. Terpii, P. I. Ignatenko, and V. A. Stupak, “Nanostructured films of vanadium borides,” Inorg. Mater. 41, 696–699 (2005).

    Article  Google Scholar 

  8. F. Kunc, J. Musil, P. H. Mayrhofer, and C. Mitterer, “Low-stress superhard Ti–B films prepared by magnetron sputtering,” Surf. Coat. Technol. 174–175, 744–753 (2003).

    Article  Google Scholar 

  9. V. Ferrando, C. Tarantini, P. Manfrinetti, I. Pallecchi, M. Salvato, and C. Ferdeghini, “Growth of diborides thin films on different substrates by pulsed laser ablation,” Thin Solid Films 515, 1439–1444 (2006).

    Article  Google Scholar 

  10. B. T. Mayumi, N. Atsushi, N. Yasuo, K. Shozo, H. Masanobu, H. Yuichiro, A. Eiji, M. Hideakia, and M. Kazuya, “Low temperature deposited Zr–B film applicable to extremely thin barrier for copper interconnect,” Appl. Surf. Sci. 256, 1222–1226 (2009).

    Article  Google Scholar 

  11. A. Chatterjee, S. Jayaraman, J. E. Gerbi, N. Kumar, J. R. Abelson, P. Bellon, A. A. Polycarpou, and J. P. Chevalier, “Tribological behavior of hafnium diboride thin films,” Surf. Coat. Technol. 201, 4317–4322 (2006).

    Article  Google Scholar 

  12. K. A. Khor, L. G. Yu, and G. Sundararajan, “Formation of hard tungsten boride layer by spark plasma sintering boriding,” Thin Solid Films 478, 232–237 (2005).

    Article  Google Scholar 

  13. J. V. Rau, A. Latini, A. R. Generosi, V. Albertini, D. Ferro, R. Teghil, and S. M. Barinov, “Deposition and characterization of superhard biphasic ruthenium boride films,” Acta Mater. 57, 673–681 (2009).

    Article  Google Scholar 

  14. Z.-W. Ji, C.-H. Hu, D.-H. Wang, Y. Zhong, J. Yang, W.-Q. Zhang, and H.-Y. Zhou, “Mechanical properties and chemical bonding of the Os–B system: A firstprinciples study,” Acta Mater. 60, 4208–4217 (2012).

    Article  Google Scholar 

  15. F. V. Kiryukhantsev-Korneev, A. N. Sheveyko, E. A. Levashov, and D. V. Shtansky, “Perspective nanostructural coatings for machinery construction,” Vopr. Materialoved., No. 2 (154), 187–201 (2008).

    Google Scholar 

  16. E. A. Levashov, D. V. Shtansky, Ph. V. Kiryukhantsev-Korneev, M. I. Petrzhik, M. Ya. Tyurina, and A. N. Sheveyko, “Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties,” Russ. Metall. (Engl. Transl.) 2010, 917–935 (2010).

    Article  Google Scholar 

  17. H. Holzschuh, “Deposition of Ti–B–N (single and multilayer) and Zr–B–N coatings by chemical vapor deposition techniques on cutting tools,” Thin Solid Films 469–470, 92–98 (2004).

    Article  Google Scholar 

  18. S. Jayaraman, J. E. Gerbi, Y. Yang, D. Y. Kim, A. Chatterjee, P. Bellon, G. S. Girolami, J. P. Chevalier, and J. R. Abelson, “HfB2 and Hf–B–N hard coatings by chemical vapor deposition,” Surf. Coat. Technol. 200, 6629–6633 (2006).

    Article  Google Scholar 

  19. A. I. Bazhin, A. A. Goncharov, V. V. Petukhov, T. D. Radjabov, V. A. Stupak, and V. A. Konovalov, “Magnetron sputtering of a vanadium-diboride target in Ar + N2 gaseous mixtures,” Vacuum 80, 918–922 (2006).

    Article  Google Scholar 

  20. P. Holubar, M. Jilek, and M. Sima, “Present and possible future applications of superhard nanocomposite coatings,” Surf. Coat. Technol. 133–134, 145–151 (2000).

    Article  Google Scholar 

  21. M. Usta, I. Ozbek, C. Bindal, A. H. Ucisik, S. Ingole, and H. Liang, “A comparative study of borided pure niobium, tungsten and chromium,” Vacuum 80, 1321–1325 (2006).

    Article  Google Scholar 

  22. E. N. Eremina, V. V, Kurbatkina, E. A. Levashov, A. S. Rogachev, and N. A. Kochetov, “Obtaining the composite MoB material by means of force SHS compacting with preliminary mechanical activation of Mo–10% B mixture.” Chem. Sustainable Dev. 13, 197–204 (2005).

    Google Scholar 

  23. V. V. Kurbatkina, E. A. Levashov, E. I. Patsera, N. A. Kochetov, and A. S. Rogachev, “Combustion and formation in the mechanoactivated Cr–B system,” Int. J. Self-Propag. High-Temp. Synth. 17, 189–194 (2008).

    Article  Google Scholar 

  24. T. S. Azatyan, V. M. Mal’tsev, A. G. Merzhanov, and V. A. Seleznev, “Combustion wave propagation mechanism in titanium–boron mixtures,” Combust., Explos. Shock Waves 16, 163–167 (1980).

    Article  Google Scholar 

  25. F. V. Kiryukhantsev-Korneev, “Elemental analysis of coatings by high-frequency glow discharge optical emission spectroscopy,” Prot. Met. Phys. Chem. Surf. 48, 585–590 (2012).

    Article  Google Scholar 

  26. D. V. Shtansky, S. A. Kulinich, E. A. Levashov, A. N. Sheveiko, Ph. V. Kiryukhantsev-Korneev, and J. J. Moore, “Localized deformation of multicomponent thin films,” Thin Solid Films 420–421, 330–337 (2002).

    Article  Google Scholar 

  27. D. V. Shtansky, K. A. Kuptsov, Ph. V. Kiryukhantsev-Korneev, and A. N. Sheveyko, “High thermal stability of TiAlSiCN coatings with “comb” like nanocomposite structure,” Surf. Coat. Technol. 206, 4840–4849 (2012).

    Article  Google Scholar 

  28. S. A. Glatz, C. M. Koller, H. Bolvardi, S. Kolozsvári, H. Riedl, and P. H. Mayrhofer, “Influence of Mo on the structure and the tribomechanical properties of arc evaporated Ti–Al–N,” Surf. Coat. Technol. 311, 330–336 (2017).

    Article  Google Scholar 

  29. J. M. Wheeler, R. Raghavan, V. Chawla, M. Morsteinb, and J. Michlera, “Deformation of hard coatings at elevated temperatures,” Surf. Coat. Technol. 254, 382–387 (2014).

    Article  Google Scholar 

  30. D. Peak, G. W. Luther III, and D. L. Sparks, “ATRFTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide,” Geochim. Cosmochim. Acta 67, 2551–2560 (2003).

    Article  Google Scholar 

  31. A. Najafi, F. Golestani-Farda, H. R. Rezaiea, and N. Ehsania, “Effect of APC addition on precursors properties during synthesis of B4C nano powder by a sol–gel process,” J. Alloys Compd. 509, 9164–9170 (2011).

    Article  Google Scholar 

  32. D. Tsiourvas, A. Tsetsekou, M. Arkas, S. Diplas, and E. Mastrogianni, “Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates,” J.Mater. Sci.: Mater. Med. 22, 85–96 (2011).

    Google Scholar 

  33. Y. Toshiya, “In-situ observation of Mo–O stretching vibrations during the reduction of Mo–O, with hydrogen by diffuse reflectance ftir spectroscopy,” Appl. Surf. Sci. 40, 179–181 (1989).

    Article  Google Scholar 

  34. Z.-H. Zhou, H. Wang, P. Yu, M. M. Olmstead, and S. P. Cramer, “Structure and spectroscopy of a bidentate bis-homocitrate dioxo-molybdenum(VI) complex: Insights relevant to the structure and properties of the FeMo-cofactor in nitrogenase,” J. Inorg. Biochem. 118, 100–106 (2013).

    Article  Google Scholar 

  35. T. Rainer, “Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy,” Am. Mineral. 87, 56–68 (2002).

    Article  Google Scholar 

  36. Sassolite R060496. http://rruff.info/chem=H,%20B, %20O/display=default/ R060496.

  37. L. Karlsson, L. Hultman, M. P. Johansson, J.-E. Sundgren, and H. Ljungcrantz, “Growth, microstructure, and mechanical properties of arc evaporated TiCxN1–x (0 = x =1) films,” Surf. Coat. Technol. 126, 1–14 (2000).

    Article  Google Scholar 

  38. A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behavior,” Wear 246, 1–11 (2000).

    Article  Google Scholar 

  39. E. A. Levashov, M. I. Petrzhik, D. V. Shtansky, Ph. V. Kiryukhantsev-Korneev, A. N. Sheveiko, R. Z. Valiev, D. V. Gunderov, S. D. Prokoshkin, A. V. Korotitskiy, and A. Yu. Smolin, “Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation,” Mater. Sci. Eng., A 570, 51–62 (2013).

    Article  Google Scholar 

  40. F. V. Kiryukhatsev-Korneev, N. A. Shirmanov, A. N. Sheveyko, E. A. Levashov, M. I. Petrzhik, and D. V. Shtansky, “Nanostructural wear-resistant coatings produced on metal-cutting tools by electric-arc evaporation and magnetron sputtering,” Russ. Eng. Res. 30, 910–920 (2010).

    Article  Google Scholar 

  41. C.-H. Cheng, J. W. Lee, L. W. Ho, H.-W. Chen, Y.-C. Chan, and J.-G. Duh, “Microstructure and mechanical property evaluation of pulsed DC magnetron sputtered Cr–B and Cr–B–N films,” Surf. Coat. Technol. 206, 1711–1719 (2011).

    Article  Google Scholar 

  42. Ph. V. Kiryukhantsev-Korneev, J. F. Pierson, M. Y. Bychkova, O. S. Manakova, E. A. Levashov, and D. V. Shtansky, “Comparative study of sliding, scratching, and impact-loading behavior of hard CrB2 and Cr–B–N films,” Tribol. Lett. 63, 44 (2016).

    Article  Google Scholar 

  43. F. V. Kiryukhatsev-Korneev, P. A. Trukhanov, A. V. Bondarev, N. V. Shvyndina, and E. A. Levashov, “Structure and properties of tribological coatings in Cu–B system,” Phys. Met. Metallogr. 115, 716–722 (2014).

    Article  Google Scholar 

  44. F. V. Kiryukhatsev-Korneev, M. I. Petrzhik, A. N. Sheveyko, E. A. Levashov, and D. V. Shtansky, “Effect of Al, Si and Cr on thermal stability and high temperature oxidation resistance of coatings based on titanium boronitride,” Phys. Met. Metallogr. 104, 167–174 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Kiryukhantsev-Korneev.

Additional information

Original Russian Text © F.V. Kiryukhantsev-Korneev, A.V. Novikov, T.B. Sagalova, M.I. Petrzhik, E.A. Levashov, D.V. Shtansky, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 11, pp. 1202–1213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, F.V., Novikov, A.V., Sagalova, T.B. et al. A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo–B–(N), Cr–B–(N) and Ti–B–(N) systems. Phys. Metals Metallogr. 118, 1136–1146 (2017). https://doi.org/10.1134/S0031918X17110059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17110059

Keywords

Navigation