Skip to main content
Log in

Structure and properties of tribological coatings in Cu-B system

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of B additions on the structure and mechanical and tribological properties of Cu coatings produced by magnetron sputtering from mosaic targets has been investigated. It has been shown that the introduction of B results in structure refinement of the coatings. The hardness, elasticity modulus, elastic recovery, and plasticity index of Cu-B coatings have been determined. It has been established that the introduction of 7–15 at % of boron favors a decrease in the coefficient of friction and reduced wear. It has been shown that high tribological characteristics of coatings in the Cu-B system are connected with the formation of solid H3BO3 lubrication on the coating surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Ciemens, “Microstructural design of hard coatings,” Prog. Mater. Sci. 51, 1032–1114 (2006).

    Article  Google Scholar 

  2. M. Ghorbani, A. Mazaheri, and A. Afshar, “Wear and friction characteristics of electrodeposited graphitebronze composite coatings,” Surf. Coat. Technol. 190, 32–38 (2005).

    Article  Google Scholar 

  3. M. Ghorbani, K. Mazaheri, Y. Khangholi, and Y. Kharazi, “Electrodeposition of graphite-brass composite coatings and characterization of the tribological properties,” Surf. Coat. Technol. 148, 71–76 (2001).

    Article  Google Scholar 

  4. M. Musil, Z. Louda, M. Soukup, and M. Kubásek, “Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films,” Diamond Relat. Mater. 17, 1905–1911 (2008).

    Article  Google Scholar 

  5. T. Kubart, L. Polcar, R. Kopecky, D. Novak, and D. Novakova, “Temperature dependence of tribological properties of MoS2 and MoSe2 coatings,” Surf. Coat. Technol. 193, 230–233 (2005).

    Article  Google Scholar 

  6. W. D. Münz, “Large-scale manufacturing of nanoscale multilayered hard coatings deposited by cathodic arc/unbalanced magnetron sputtering,” MRS Bull. 28, 173–179 (2003).

    Article  Google Scholar 

  7. N. M. Renevier, N. Lobiondo, V. C. Fox, D. G. Teer, and J. Hampshire, “Performance of MoS2/metal composite coatings used for dry machining and other industrial applications,” Surf. Coat. Technol. 123, 84–91 (2000).

    Article  Google Scholar 

  8. J. M. Carrapichano, J. R. Gomes, and R. F. Silva, “Tribological behavior of Si3N4-BN ceramic materials for dry sliding applications,” Wear 223, 1070–1076 (2002).

    Article  Google Scholar 

  9. B. Navinsek, P. Panjan, M. Cekada, and D. T. Quinto, “Interface characterization of combination hard/solid lubricant coatings by specific methods,” Surf. Coat. Technol. 154, 194–203 (2002).

    Article  Google Scholar 

  10. A. Erdemir, R. A. Erck, and J. Robles, “Relationship of Hertzian contact pressure to friction behavior of self-lubricating boric acid films,” Surf. Coat. Technol. 49, 435–438 (1991).

    Article  Google Scholar 

  11. Modern Tribology Handbook, Vol. 2, Ed. by B. Erdemir and B. Bhushan (CRC, Boca Raton, 2001), pp. 787–825.

    Google Scholar 

  12. I. L. Singer, S. D. Dvorak, K. J. Wahl, and T. W. Scharf, “Role of third bodies in friction and wear of protective coatings,” J. Vacuum Sci. Technol., A 21, 232–240 (2003).

    Article  Google Scholar 

  13. B. Prakash and J. P. Celis, “Plasma immersion ion implanted Ti-B-based coatings: Tribological behavior at room and high temperatures,” Surf. Coat. Technol. 200, 182–185 (2005).

    Article  Google Scholar 

  14. C. Higdon, B. Cook, J. Haringa, A. Russell, J. Goldsmith, J. Qu, and P. Blau, “Friction and wear mechanisms in AlMgB14-TiB2 nanocoatings,” Wear 271, 2111–2115 (2011).

    Article  Google Scholar 

  15. M. Mori, T. Shibayanagi, M. Maeda, and M. Naka, “Characteristics of nanostructured Cr-B films produced by RF magnetron sputtering,” Scr. Mater. 44, 2035–2038 (2001).

    Article  Google Scholar 

  16. M. Mikula, B. Grančič, V. Buršikova, A. Csuba, M. Držik, Š. Kavecký, A. Plecenik, and P. Kúš, “Mechanical properties of superhard TiB2 coatings prepared by DC magnetron sputtering,” Vacuum 82, 278–281 (2008).

    Article  Google Scholar 

  17. Y. Wu, Ch. Li, X. Liu, and K. Lu, “In situ formation of superhard Cu-B based composite by reducing reaction,” J. Alloys Compd. 527, 184–187 (2012).

    Article  Google Scholar 

  18. N. Schalk, T. Weirather, C. Polzer, P. Polcik, and C. Mitterer, “A comparative study on Ti1 − x AlxN coatings reactively sputtered from compound and from mosaic targets,” Surf. Coat. Technol. 205, 4705–4710 (2011).

    Article  Google Scholar 

  19. K. Singh, A. C. Bidaye, and A. K. Suri, “Experimental verification of model for prediction of coating composition deposited by sputtering using mosaic target in nitrogen,” Vacuum 86, 56–61 (2011).

    Article  Google Scholar 

  20. S. A. Shiryaev, M. V. Atamanov, M. I. Guseva, Yu. V. Martynenko, A.V. Mitin, V.S. Mitin, and P. G. Moskovkin, “Production and properties of metal-carbon composite coatings with a nanocrystalline structure,” Tech. Phys. 47, 238–243 (2002).

    Article  Google Scholar 

  21. M. Audronis, P. J. Kelly, R. D. Arnell, A. Leyland, and A. Matthews, “Deposition of multicomponent chromium boride based coatings by pulsed magnetron sputtering of powder targets,” Surf. Coat. Technol. 200, 1616–1623 (2005).

    Article  Google Scholar 

  22. Ph. V. Kiryukhantsev-Korneev, “Elemental analysis of coatings by high-frequency glow discharge optical emission spectroscopy,” Prot. Metals Phys. Chem. Surf. 48, 585–590 (2012).

    Article  Google Scholar 

  23. B. A. Movchan and A. V. Demchishin, “Study of structure and properties of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide thick vacuum condensates,” Fiz. Met. Metalloved. 28, 653–660 (1969).

    Google Scholar 

  24. D. J. Chakrabarti and D. E. Laughlin, Phase Diagrams of Binary Copper Alloys (ASM Int., Materials Park, Ohio, 1994).

    Google Scholar 

  25. H. Werheit, V. Filipov, U. Kuhlmann, U. Schwarz, M. Armbrüter, A. Leithe-Jasper, T. Tanaka, I. Higashi, T. Lundström, V. N. Gurin, and M. M. Korsukova, “Raman effect in icosahedral boron-rich solids,” Sci. Technol. Adv. Mater. 11, 1–27 (2010).

    Article  Google Scholar 

  26. I. Dreiling, C. Raisch, J. Glaser, D. Stiens, and T. Chassé, “Characterization and oxidation behavior of MTCVD Ti-B-N coatings,” Surf. Coat. Technol. 206, 479–486 (2011).

    Article  Google Scholar 

  27. S. Chowdhury, M. T. Laugier, and I. Z. Rahman, “Characterization of DLC coatings deposited by RF magnetron sputtering,” J. Mater. Proc. Technol. 153154, 804–810 (2004).

    Article  Google Scholar 

  28. E. A. Levashov, M. I. Petrzhik, Ph. V. Kiryukhantsev- Korneev, D. V. Shtansky, S. D. Prokoshkin, A. N. Sheveiko, A.V. Korotitsky, D. V. Gunderov, and R. Z. Valiev, “Structure and mechanical behavior during indentation of biocompatible nanostructured titanium alloys and coatings,” Metallurgist 56, 395–407 (2012).

    Article  Google Scholar 

  29. E. A. Levashov, M. I. Petrzhik, D. V. Shtansky, Ph. V. Kiryukhantsev-Korneev, A. N. Sheveyko, R. Z. Valiev, D. V. Gunderov, S. D. Prokoshkin, A. V. Korotitskiy, and A. Yu. Smolin, “Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation,” Mater. Sci. Eng., A 570, 51–62 (2013).

    Article  Google Scholar 

  30. Yu. V. Milman, A. A. Golubenko, and S. N. Dub, “Indentation size effect in nanohardness,” Acta Mater. 59, 7480–7487 (2011).

    Article  Google Scholar 

  31. M. Yu. Gutkin and I. A. Ovid’ko, “Yield strength and plastic deformation of nanocrystalline materials,” Usp. Mech. 2, 68–125 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. V. Kiryukhantsev-Korneev.

Additional information

Original Russian Text © Ph.V. Kiryukhantsev-Korneev, P.A. Trukhanov, A.V. Bondarev, N.V. Shvyndina, E.A. Levashov, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 7, pp. 763–770.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiryukhantsev-Korneev, P.V., Trukhanov, P.A., Bondarev, A.V. et al. Structure and properties of tribological coatings in Cu-B system. Phys. Metals Metallogr. 115, 716–722 (2014). https://doi.org/10.1134/S0031918X14040085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14040085

Keywords

Navigation