Skip to main content
Log in

Effect of deviations of composition from the quasi-binary section TiNi-TiCu on structural and phase transformations in rapidly quenched alloys

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of X-ray diffraction, transmission and scanning electron microscopy, and selected-area electron diffraction (SAED) have been used to study the phase and elemental composition and structure of alloys close to the stoichiometric Ti50Ni25Cu25 alloy. Based on the method of rapid quenching of the melt (free-jet melt spinning), alloys of the quasi-binary TiNi-TiCu section have been prepared, which in the initial as-cast state exhibited the thermoelastic martensitic transformations B 2B 19 and related shape-memory effects. The chemical composition of the Ti50 + x Ni25Cu25 − x alloys was varied by changing titanium and copper concentrations within x ≤ ±1 at % (from Ti49Ni25Cu26 to Ti51Ni25Cu24). It has been established that quenching at a cooling rate equal to 106 K/s leads to the amorphization of all the alloys under consideration. Heating to 723 K and higher leads to the devitrification of the alloy with the formation of a nanocrystalline or submicrocrystalline structure of the B2 austenite. The mechanical properties of these alloys have been measured in the initial amorphous state and in the polycrystalline martensitic state. It has been shown that, depending on the extent of the deviations of the alloy composition from the stoichiometry, which cause the decomposition of the alloys in the process of nanocrystallization, regular changes are observed in their mechanical properties and in the shape-memory effects. The kinetics of the processes of the devitrification of the alloys, as well of the forward and reverse martensitic transformations, have been studied, their characteristic temperatures have been determined, and a diagram of the dependence of the characteristic temperatures on the chemical composition of the alloys has been constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kurdjumov and L. G. Khandros, “On the thermoelastic equilibrium at martensitic transformations,” Dokl. Akad. Nauk SSSR 66, 211–214 (1949).

    Google Scholar 

  2. K. Otsuka, K. Shimizu, Y. Suzuki, Y. Sekiguchi, C. Tadaki, T. Honma, and S. Miyazaki, Shape Memory Alloys, Ed. by H. Funakubo (Kyoto, 1984; Metallurgiya, Moscow, 1990).

  3. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  4. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransition Phenomena and Martensite Transformations (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1998) [in Russian].

    Google Scholar 

  5. V. G. Pushin, S. D. Prokoshkin, R. Z. Valiev, V. Brailovskii, E. Z. Valiev, A. E. Volkov, A. M. Glezer, S. V. Dobatrin, E. F. Dudarev, V. T. Zhu, Yu. G. Zainulin, Yu. R. Kolobov, V.V. Kondratiev, A. V. Korolev, A. I. Korshunov, N. I. Kourov, N. V. Kudrevatykh, A. I. Lotkov, L. L. Meisner, A. A. Popov, N. N. Popov, A. I. Razov, M. A. Khusainov, Yu. I. Chumlyakov, S. V. Andreev, A. A. Baturin, S. P. Belyaev, V. N. Grish- kov, D. V. Gunderov, A. P. Dyupin, K. V. Ivanov, V. I. Itin, M. K. Kasymov, O. A. Kashin, I. V. Kireeva, A. I. Kozlov, T. E. Kuntsevich, N. N. Kuranova, N. Yu. Pushina, E. P. Ryklina, A. N. Uksusnikov, I. Yu. Khmelevskaya, A. V. Shelyakov, V. Ya. Shklover, E. V. Shorokhov, and L. I. Yurchenko, Titanium Nickelide Alloys with Shape Memory. Ch. I. Structure, Phase Transformations and Properties (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  6. V. G. Pushin, “Alloys with a termomechanical memory: structure, properties and application,” Phys. Met. Metallogr. 90(Suppl. 1), S68–S95 (2000).

    Google Scholar 

  7. S. P. Alisova, N. V. Lutskaya, P. V. Budberg, and E. I. Bychkova, “Phase structure of TiCu-TiNi-TiCo (TiFe) systems in equilibrium and metastable states,” Izv. Ross. Akad. Nauk., Ser. Met., No. 3, 221–228 (1993).

    Google Scholar 

  8. M. B. Babanly, V. A. Lobodyuk, and N. M. Matveeva, “Characteristics and structural peculiarities of marten-site quenched from the melt,” Izv. Ross. Akad. Nauk., Ser. Met., No. 5, 171–177 (1993).

    Google Scholar 

  9. N. M. Matveeva, V. G. Pushin, A. V. Shelyakov, Yu. A. Bykovskii, S. B. Volkova, and V. S. Kraposhin, “Effect of the conditions of crystallization of amorphous TiNi-TiCu alloys on their structure and shape memory,” Phys. Met. Metallogr. 83, 623–632 (1997).

    Google Scholar 

  10. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi-TiCu alloys rapidly quenched from the melt: I. High-copper amorphous alloys,” Phys. Met. Metallogr. 83, 275–282 (1997).

    Google Scholar 

  11. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi-TiCu alloys rapidly quenched from the melt: II. Alloys with mixed amorphous-crystalline structure,” Phys. Met. Metallogr. 83, 283–288 (1997).

    Google Scholar 

  12. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi-TiCu alloys rapidly quenched from the melt: III. Mechanisms of crystallization,” Phys. Met. Metallogr. 83, 435–443 (1997).

    Google Scholar 

  13. V. G. Pushin, S. B. Volkova, and N. M. Matveeva, “Structural and phase transformations in quasi-binary TiNi-TiCu alloys rapidly quenched from the melt: IV. The microstructure of crystalline alloys,” Phys. Met. Metallogr. 83, 673–678 (1997).

    Google Scholar 

  14. V. G. Pushin, S. B. Volkova, N. M. Matveeva, L. I. Yurchenko, and A. S. Chistyakov, “Structural and phase transformations in quasi-binary TiNi-TiCu alloys rapidly quenched from the melt: V. Effect of heat treatment,” Phys. Met. Metallogr. 83, 679–683 (1997).

    Google Scholar 

  15. V. G. Pushin, S. B. Volkova, N. M. Matveeva, L. I. Yurchenko, and A. S. Chistyakov, “Structural and phase transformations in quasi-binary TiNi-TiCu alloys rapidly quenched from melt: VI. Martensitic Transformations,” Phys. Met. Metallogr. 84, 441–448 (1997).

    Google Scholar 

  16. V. G. Pushin, N. I. Kourov, T. E. Kuntsevich, N. N. Kuranova, N. M. Matveeva, and L. I. Yurchenko, “Nanocrystalline TiNi-based shape-memory materials produced by ultrarapid quenching from melt,” Phys. Met. Metallogr. 94(Suppl. 1), S107–S118 (2002).

    Google Scholar 

  17. V. G. Pushin, V. V. Popov, T. E. Kuntsevich, N. I. Kourov, and A. V. Korolev “Rapidly quenched TiNiCo alloys with shape-memory effect: I. Martensitic transformations and mechanical properties,” Phys. Met. Metallogr. 91, 374–382 (2001).

    Google Scholar 

  18. V. G. Pushin, V. V. Popov, T. E. Kuntsevich, and N. M. Matveeva, “Rapidly solidified shape-memory TiNiCo alloys: II. Microstructure,” Phys. Met. Metallogr. 91, 486–493 (2001).

    Google Scholar 

  19. V. G. Pushin, N. I. Kourov, T. E. Kuntsevich, N. M. Matveeva, and V. V. Popov, “Structure and properties of rapidly quenched TiNiFe alloys with a shape memory effect: I. Microstructure and phase composition of initial austenite,” Phys. Met. Metallogr. 92, 58–62 (2001).

    Google Scholar 

  20. V. G. Pushin, N. I. Kourov, T. E. Kuntsevich, N. M. Matveeva, and V. V. Popov, “Structure and properties of rapidly quenched TiNiFe alloys with a shape memory effect: II. Martensite transformations and properties,” Phys. Met. Metallogr. 92, 63–69 (2001).

    CAS  Google Scholar 

  21. V. A. Aleksashin, V. V. Kondrat’ev, A. V. Korolev, A. V. Pushin, V. G. Pushin, A. V. Soloninin, and A. P. Tankeev, “63Cu NMR spectra, magnetic susceptibility, and transmission electron microscopy of the rapidly quenched alloy Ti50Ni25Cu25,” Phys. Met. Metallogr. 110, 582–587 (2010).

    Article  Google Scholar 

  22. V. G. Pushin, N. N. Kuranova, A. V. Pushin, E. Z. Valiev, N. I. Kourov, A. E. Teplykh, and A. N. Uksusnikov, “Formation of nanocrystalline structure in the amorphous Ti50Ni25Cu25 alloy upon severe thermomechanical treatment and the size effect of the thermoelastic martensitic B2 ↔ B19 transformation,” Phys. Met. Metallogr. 113, 271–282 (2012).

    Article  CAS  Google Scholar 

  23. A. V. Pushin, A. A. Popov, and V. G. Pushin, “Effect of the deviation of the chemical composition from the stoichiometric composition on the structural and phase transformations and properties of rapidly quenched Ti50 + x Ni25 − x Cu25 alloys,” Phys. Met. Metallogr. 113, 283–294 (2012).

    Article  Google Scholar 

  24. E. Khornbogen, “Phase structure and microstructure of rapidly quenched alloys,” in Fourth International Conderence on Rapidly Quenched Metals, Ed. by S. Steeb and W. Warlimont, Wurzburg, 1984 (Elsevier, Amsterdam, 1985), pp. 785–796.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pushin.

Additional information

Original Russian Text © A.V. Pushin, A.A. Popov, V.G. Pushin, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 8, pp. 753–764.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pushin, A.V., Popov, A.A. & Pushin, V.G. Effect of deviations of composition from the quasi-binary section TiNi-TiCu on structural and phase transformations in rapidly quenched alloys. Phys. Metals Metallogr. 114, 692–702 (2013). https://doi.org/10.1134/S0031918X13060136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13060136

Keywords

Navigation