Skip to main content
Log in

Superplasticity of hydrogen-containing VT6 titanium alloy with a submicrocrystalline structure

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Concentration and temperature regimes of hydrogen treatment have been found, which in combination with severe plastic deformation allow one to obtain a microstructure with a size of constituents of about 0.1 μm in the VT6 titanium alloy. It has been shown that the alloy with such a structure has superplastic properties in a temperature range from 500 to 650°C. Characteristics of superplasticity of a hydrogenated submicrocrystalline VT6 alloy and a basic alloy, in which the submicrocrystalline structure was obtained without hydrogen alloying, have been compared. Particular features of a hydrogenated submicrocrystalline VT6 alloy in a superplastic state are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Kaibyshev, Superplasticity of Alloys, Intermetallides and Ceramics (Springer, Berlin, 1992).

    Google Scholar 

  2. A. V. Sergeeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, “Enhanced Superplasticity in a Ti-6Al-4V Alloy Processed by Severe Plastic Deformation,” Scr. Mater. 43, 918–824 (2000).

    Google Scholar 

  3. G. A. Salishchev, R. M. Galeev, O. Valiakhmetov, et al., “Enhanced Superplastic Forming of Ti-6Al-4V,” in Proc. of High Performance Metallic Materials for Cost Sensitive Applications, Ed. by F. H. (Sam) Froes, E. Y. Chen, R. R. Boyer, E. M. Taleff, L. Lu, D. L. Zhang, C. M. Ward-Close, and P. Eliezer (The Metallurgical Society, Warrendale, PA, 2002), pp. 85–92.

    Google Scholar 

  4. G. A. Salishchev, M. A. Murzinova, S. V. Zherebtsov, et al., “Formation of Nanocrystalline in Two-Phase Titanium Alloys by Warm Severe Plastic Deformation,” Proc. of High Performance Metallic Materials for Cost Sensitive Applications, Ed. by F. H. (Sam) Froes, E. Y. Chen, R. R. Boyer, E. M. Taleff, L. Lu, D. L. Zhang, C. M. Ward-Close, and P. Eliezer (The Metallurgical Society, Warrendale, PA, 2002), pp. 113–122.

    Google Scholar 

  5. O. A. Kaibyshev, G. A. Salishchev, R. M. Galeev, et al., “A Method of Treatment of Titanium Alloys,” RF Patent No. 2134308, Byull. Izobret., No. 22 (1999); O. A. Kaibyshev, G. A. Salishchev, R. M., et al., “Method of Processing Titanium Alloys and the Articles,” Patent PCT/US97/18642, WO 9817836, Byull. Izobret., Issue 48, No. 4, p. 23 (1999).

  6. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  7. W. R. Kerr, P. R. Smith, M. E. Robertson, et al., “Hydrogen as an Alloying Element in Titanium (Hydrovac),” in Titanium 80: Science and Technology, Ed. by H. Kimura and O. Izumi (The Metallurgical Society, Warrendale, PA, 1980), Vol. 4, pp. 2477–2586.

    Google Scholar 

  8. V. K. Nosov and B. A. Kolachev, Hydrogen Plastification upon Hot Deformation of Titanium Alloys (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  9. I. O. Bashkin and E. G. Ponyatovskii, “Hydrogen Plastification in Alloys of Titanium,” Materialovedenie, No. 2, 35–41 (1997).

  10. O. N. Senkov and F. H. Froes, “Thermohydrogen Processing of Titanium Alloys,” Int. J. Hydrogen Energy 24, 565–576 (1999).

    Article  CAS  Google Scholar 

  11. M. I. Mazurskii, M. A. Murzinova, G. A. Salishchev, and D. D. Afonichev, “Use of Hydrogen Doping for Producing Submicrocrystalline Structure in Two-Phase Titanium Alloys,” Izv. Ross. Akad. Nauk, Met., No. 6, 83–88 (1995).

  12. A. A. Il’in, Mechanism and Kinetics of Phase Structural Transformations in Titanium Alloys (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  13. A. A. Il’in, A. M. Mamonov, V. K. Nosov, and V. M. Maistrov, “Effect of Hydrogen on Diffusion Mobility of Atoms of the Metal Sublattice of the β Phases of Titanium Alloys,” Izv. Ross. Akad. Nauk, Met., No. 5, 99–103 (1994).

  14. N. O. Osintseva, Phase and Structural Transformations in Hydrogen-Containing Alloys in Ti-Al-V System, Dissertation, MATI-RGTU, Moscow, 2000) [in Russian].

    Google Scholar 

  15. G. A. Salishchev, M. I. Mazurskii, M. A. Murzinova, and D. D. Afonichev, “A Method for Producing Semi-Finished Products with a Fine-Crystalline Globular Structure in α and α + β Titanium Alloys,” RF Patent No. 2115759, Byull. Izobret., (1998).

  16. O. A. Kaibyshev and V. V. Astanin, “Isothermal Rolling of Thin Sheets of VT6 Titanium Alloy with Submicrocrystalline Structure,” in Innovation Problems of Engineering Industry in Bashkortostan (Izd-vo Gilem, Ufa, 2003), pp. 279–280 [in Russian].

    Google Scholar 

  17. M. A. Murzinova, G. A. Salishchev, and D. D. Afonichev, “Effect of Hydrogen on the Microstructure of a Titanium Alloy VT9 upon Hot Deformation and Vacuum Annealing,” Fiz. Met. Metalloved. 98(6), 73–81 (2004) [Phys. Met. Metallogr. 98 (6), 615–623 (2004)].

    CAS  Google Scholar 

  18. M. W. Grabski, Nadplasticznosc Strukturalna Metali (Šlask, Katowice, 1972; Metallurgiya, Moscow, 1975).

    Google Scholar 

  19. I. O. Bashkin, V. Yu. Malyshev, Yu. A. Aksenov, et al., “Effect of Hydrogen on the Plasticity and Resistance to Deformation of a Titanium Alloy VT9 at Temperatures of up to 930°C,” Fiz. Met. Metalloved., No. 5, 168–174 (1990).

  20. L. I. Anisimova, Yu. A. Aksenov, M. G. Badaeva, et al., “Reversible Doping by Hydrogen and Deformation of VT6 Titanium Alloy,” Metalloved. Term. Obrab. Met., No. 2, 43–45 (1992).

  21. M. A. Murzinova, G. A. Salishchev, D. D. Afonichev, et al., “Effect of Hydrogen Concentration on the Microstructure Transformation of the VT1-0 Alloy upon Hot Deformation,” Izv. Ross. Akad. Nauk, Met., No. 6, 73–79 (2000).

  22. V. K. Portnoi, I. I. Novikov, A. A. Il’in, et al., “Effect of Hydrogen on the Superplasticity of VT6 Alloy Sheets,” Izv. Ross. Akad. Nauk., Met., No. 6, 89–94 (1995).

    Google Scholar 

  23. A. V. Fishgoit and Yu. B. Egorova, “Interaction of Hydrogen with Dislocations in Metals,” in Interaction of Crystal Structure Defects and Metal Properties (Tula Pedagog. Inst., Tula, 1982) [in Russian], pp. 15–22.

    Google Scholar 

  24. Abhidjit Dutta and N.C. Birla, “Stress Induced Hydrogen Diffusion in α + β Titanium Alloy during Superplastic Deformation,” Scr. Metall. 21, 1051–1054 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Murzinova, G.A. Salishchev, D.D. Afonichev, 2007, published in Fizika Metallov i Metallovedenie, 2007, Vol. 104, No. 2, pp. 204–211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murzinova, M.A., Salishchev, G.A. & Afonichev, D.D. Superplasticity of hydrogen-containing VT6 titanium alloy with a submicrocrystalline structure. Phys. Metals Metallogr. 104, 195–202 (2007). https://doi.org/10.1134/S0031918X07080133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X07080133

PACS numbers

Navigation