Skip to main content
Log in

The Role of Physical Models in the Description of Luminescence Kinetics of Hybrid Nanowires

  • OPTICS OF LOW-DIMENSIONAL STRUCTURES, MESOSTRUCTURES, AND METAMATERIALS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The luminescence photodynamics of an array of InP/InAsP/InP nanowires formed via molecular beam epitaxy onto a Si(III) substrate is investigated in this work. Using several kinetic models, the experimental data acquired by a 633-nm room-temperature laser excitation have been analyzed. The kinetics of luminescence decay of the InAsP nanoinsert is shown to be best described in the context of the model of contact quenching. The total time of decay of the excited state (the radiative lifetime) of the InAsP nanoinsert is estimated to be τ ~ 40 ns. The reasons of unexpectedly long duration of the excitation transfer from InP are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K. M. A. Rahman, Phys. Status Solidi RRL 7, 815 (2013).

    Article  Google Scholar 

  2. R. Yan, D. Gargas, and P. Yang, Nat. Photon. 3, 569 (2009).

    Article  ADS  Google Scholar 

  3. Y. Zhang, J. Wu, M. Aaegesen, and H. Liu, J. Phys. D: Appl. Phys. 48, 463001 (2015).

    Article  ADS  Google Scholar 

  4. F. Patolsky, G. Zheng, and C. M. Lieber, Nanomedicine 1, 51 (2006).

    Article  Google Scholar 

  5. G. E. Cirlin, I. V. Shtrom, R. R. Reznik, Y. B. Samsonenko, A. I. Khrebtov, A. D. Bouravleuv, and I. P. Soshnikov, Semiconductors 50, 1421 (2016).

    Article  ADS  Google Scholar 

  6. P. Kuyanov and R. R. LaPierre, Nanotecnology 26, 315202 (2015).

    Article  ADS  Google Scholar 

  7. A. I. Khrebtov, R. R. Reznik, E. V. Ubyivovk, A. P. Litvin, I. D. Skurlov, P. S. Parfenov, A. S. Kulagina, V. V. Danilov, and G. E. Cirlin, Semiconductors 53, 1258 (2019).

    Article  ADS  Google Scholar 

  8. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, Nat. Commun. 3 (737) (2012). .https://doi.org/10.1038/ncomms1746

  9. J. M. Pietryga, Y-S. Park, J. Lim, A. F. Fidler, W. K. Bae, S. Browelli, and V. I. Klimov, Chem. Rev. 116, 10513 (2016).

    Article  Google Scholar 

  10. V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spectrosc. 114, 880 (2013).

    Article  ADS  Google Scholar 

  11. D. Spirkoska, G. Abstreiter, and A. Fontcuberta i Morral, Nanotecnology 19, 435704 (2008).

    Article  Google Scholar 

  12. M. S. Smirnov, O. V. Ovchinnikov, and A. S. Perepelitsa, Opt. Spectrosc. 126, 62 (2019).

    Article  ADS  Google Scholar 

  13. E. N. Bodunov and A. L. Simões Gamboa, J. Phys. Chem. C 123, 25515 (2018). https://doi.org/10.1021/acs.jpcc.9b07619

    Article  Google Scholar 

  14. E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simões Gamboa, Ann. Phys. (Berlin) 528, 272 (2016). https://doi.org/10.1002/andp.201500350

    Article  ADS  Google Scholar 

  15. E. N. Bodunov, Y. A. Antonov, and A. L. Simões Gamboa, J. Chem. Phys. 146, 114102 (2017). https://doi.org/10.1063/1.4978396

    Article  ADS  Google Scholar 

  16. L. Brus, Phys. Rev. B 53, 4649 (1996).

    Article  ADS  Google Scholar 

  17. S. Chen, M. Yoshita, A. Ishikawa, T. Mochizuki, S. Maruyama, H. Akiyama, Y. Hayamizu, L. N. Pfeiffer, and K. W. West, Sci. Rep. 3, 1941 (2013). https://doi.org/10.1038/srep01941

    Article  ADS  Google Scholar 

  18. T. D. Krauss and J. J. Peterson, Nat. Mater 11, 14 (2012).

    Article  ADS  Google Scholar 

  19. C. de Mello Donegá, M. Bode, and A. Meijerink, Phys. Rev. B 74, 085320 (2006).

    Article  ADS  Google Scholar 

  20. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, Chem. Phys. 315, 171 (2005). https://doi.org/10.1016/j.chemphys.2005.04.006

    Article  Google Scholar 

  21. E. N. Bodunov, M. N. Berberan-Santos, and J. M. G. Martinho, Chem. Phys. 316, 217 (2005). https://doi.org/10.1016/j.chemphys.2005.05.020

    Article  Google Scholar 

  22. M. N. Berberan-Santos, E. N. Bodunov, and J. M. G. Martinho, Opt. Spectrosc. 99, 918 (2005). https://doi.org/10.1134/1.2149416

    Article  ADS  Google Scholar 

  23. Y. -S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. Garcıa-Santamarıa, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Phys. Rev. Lett. 106, 187401 (2011).

    Article  ADS  Google Scholar 

  24. G. Bulgarini, M. E. Reimer, T. Zehender, M. Hocevar, E. Bakkers, L. P. Kouwenhoven, and V. Zwiller, Appl. Phys. Lett. 100, 121106 (2012).

    Article  ADS  Google Scholar 

  25. L. V. Asryan and S. Luryi, IEEE J. Quantum Electron. 37, 905 (2001).

    Article  ADS  Google Scholar 

  26. B. Pal, K. Goto, M. Ikezawa, Y. Masumoto, P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 93, 073105 (2008).

    Article  ADS  Google Scholar 

  27. V. G. Talalaev, A. V. Senichev, B. V. Novikov, J. W. Tomm, T. Elsaesser, N. D. Zakharov, P. Werner, U. Gösele, Y. B. Samsonenko, and G. E. Cirlin, Semiconductors 44, 1050 (2010).

    Article  ADS  Google Scholar 

  28. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford Univ. Press, Oxford, 1930).

    MATH  Google Scholar 

  29. V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Nonradiative Transfer of Electronic Excitation Energy (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  30. E. N. Bodunov and A. L. Simões Gamboa, J. Phys. Chem. C 122, 10637 (2018). https://doi.org/10.1021/acs.jpcc.8b02779

    Article  Google Scholar 

  31. E. N. Bodunov and A. L. Simões Gamboa, Semiconductors 53, 2133 (2019). https://doi.org/10.1134/S1063782619120078

    Article  ADS  Google Scholar 

  32. E. N. Bodunov and A. L. Simões Gamboa, Semiconductors 52, 587 (2018). https://doi.org/10.1134/S1063782618050044

    Article  ADS  Google Scholar 

  33. E. N. Bodunov, M. N. Berberan-Santos, and J. M. G. Martinho, Chem. Phys. Lett. 297, 419 (1998). https://doi.org/10.1016/S0009-2614(98)01151-8

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, state order no. 16.9791.2017/8.9. The samples were grown with the financial support of the Russian Science Foundation, project no. 19-72-30010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kulagina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagina, A.S., Khrebtov, A.I., Reznik, R.R. et al. The Role of Physical Models in the Description of Luminescence Kinetics of Hybrid Nanowires. Opt. Spectrosc. 128, 119–124 (2020). https://doi.org/10.1134/S0030400X20010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20010129

Keywords:

Navigation