Skip to main content
Log in

Investigation of Neurovascular Structures Using Phase-Modulation Spectrophotometry

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We investigated the possibility of using phase-modulation spectrophotometry for the detection and recognition of large blood vessels and nerves in the volume of biological tissues for the tasks of transnasal endoscopic neurosurgery when removing skull base tumors. Optical and dynamic characteristics of neurovascular structures of various types were studied. Informative independent parameters and their corresponding criteria for the detection and recognition of neurovascular structures in the tissue volume, based on the difference in the optical properties of the blood, nerves, and their surrounding tissues, are proposed and experimentally investigated in vivo and in situ. The preliminary results indicate the prospects of applying phase-modulation spectrophotometry in endoscopic neurosurgery and can be used in time-domain spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. H. Snyderman, R. L. Carrau, A. B. Kassa, A. Zanation, D. Prevedello, P. Gardner, and A. Mintz, J. Surg. Oncol. 97, 658 (2008). https://doi.org/10.1002/JSO.21020

    Article  Google Scholar 

  2. A. N. Shkarubo, K. V. Koval, I. V. Chernov, D. N. Andreev, and A. A. Panteleyev, World Neurosurg. 121, 246 (2019). https://doi.org/10.1016/j.wneu.2018.09.090

    Article  Google Scholar 

  3. A. N. Shkarubo, I. V. Chernov, A. A. Ogurtsova, D. A. Moshchev, A. J. Lubnin, D. N. Andreev, and K. V. Koval, World Neurosurg. 98, 230 (2017). https://doi.org/10.1016/J.WNEU.2016.10.089

    Article  Google Scholar 

  4. S. Chan, F. Conti, K. Salisbury, and N. H. Blevins, Neurosurgery 72, A154 (2013). https://doi.org/10.1227/NEU.0b013e3182750d26

    Article  Google Scholar 

  5. E. Cordero, I. Latka, C. Matthaus, I. W. Schie, and J. Popp, J. Biomed. Opt. 23, 071210 (2018). https://doi.org/10.1117/1.JBO.23.7.071210

    Article  ADS  Google Scholar 

  6. E. L. Wisotzky, F. C. Uecker, P. Arens, S. Dommerich, A. Hilsmann, and P. Eisert, J. Biomed. Opt. 23, 091409 (2018). https://doi.org/10.1117/1.JBO.23.9.091409

    Article  ADS  Google Scholar 

  7. K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, J. Biomed. Opt. 9, 568 (2004). https://doi.org/10.1117/1.1695563

    Article  ADS  Google Scholar 

  8. F. J. Bolton, A. S. Bernat, K. Bar-Am, D. Levitz, and S. Jacques, J. Biomed. Opt. 23, 121612 (2018). https://doi.org/10.1117/1.JBO.23.12.121612

    Article  ADS  Google Scholar 

  9. U. Baran and R. K. Wang, Neurophotonics 3, 010902 (2016). https://doi.org/10.1117/1.NPh.3.1.010902

    Article  Google Scholar 

  10. O. Assayag, K. Grieve, B. Devaux, F. Harms, J. Pallud, F. Chretien, C. Boccara, and P. Varlet, NeuroImage: Clin. 2, 549 (2013). https://doi.org/10.1016/J.NICL.2013.04.005

    Article  Google Scholar 

  11. L. Bachmann, D. M. Zezell, A. C. Ribeiro, L. Gomes, and A. S. Ito, Appl. Spectrosc. Rev. 41, 575 (2006). https://doi.org/10.1080/05704920600929498

    Article  ADS  Google Scholar 

  12. Y. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, J. Biomed. Opt. 15, 056022 (2010). https://doi.org/10.1117/1.3486612

    Article  ADS  Google Scholar 

  13. B. W. Pogue, S. L. Gibbs-Strauss, P. A. Valdes, K. S. Samkoe, D. W. Roberts, and K. D. Paulsen, IEEE J. Sel. Top. Quant. Electron. 1 (3) 2010). https://doi.org/10.1109/JSTQE.2009.2034541

  14. S. J. Oh, S. H. Kim, Y. B. Ji, K. Jeong, Y. Park, J. Yang, D. W. Park, S. K. Noh, and S. G. Kang, Y. M. Huh, J. H. Son, and J. S. Suh, Biomed. Opt. Express 5, 2837 (2014). https://doi.org/10.1364/BOE.5.002837

    Article  Google Scholar 

  15. A. A. Gavdush, N. V. Chernomyrdin, K. M. Malakhov, S. I. T. Beshplav, I. N. Dolganova, A. V. Kosyrkova, P. V. Nikitin, G. R. Musina, G. M. Katyba, I. V. Reshetov, O. P. Cherkasova, G. A. Komandin, V. E. Karasik, A. A. Potapov, V. V. Tuchin, and K. I. Zaytsev, J. Biomed. Opt. 24, 027001 (2019). https://doi.org/10.1117/1.JBO.24.2.027001

    Article  ADS  Google Scholar 

  16. U. Utzinger and R. R. Richards-Kortum, J. Biomed. Opt. 8, 121 (2003). https://doi.org/10.1117/1.1528207

    Article  ADS  Google Scholar 

  17. L. V. Osipov, Ultrasonic Diagnostic Devices: Modes, Methods and Technologies (IzoMed, Moscow, 2011) [in Russian].

    Google Scholar 

  18. J. S. Uribe, F. L. Vale, and E. Dakwar, Spine 35, S368 (2010). https://doi.org/10.1097/BRS.0b013e3182027976

    Article  Google Scholar 

  19. J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, J. Neurosci. Meth. 163, 326 (2007). https://doi.org/10.1016/J.JNEUMETH.2007.03.016

    Article  Google Scholar 

  20. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, Biophys. J. 93, 2567 (2007). https://doi.org/10.1529/BIOPHYSJ.107.104786

    Article  ADS  Google Scholar 

  21. A. D. Izzo, J. T. Walsh, H. Ralph, J. Webb, M. Bendett, J. Wells, and C. P. Richter, Biophys. J. 94, 3159 (2008). https://doi.org/10.1529/BIOPHYSJ.107.117150

    Article  ADS  Google Scholar 

  22. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, NeuroImage 57, 155 (2011). https://doi.org/10.1016/J.NEUROIMAGE.2011.03.084

    Article  Google Scholar 

  23. M. Jeschke and T. Moser, Hearing Res. 322, 224 (2015). https://doi.org/10.1016/J.HEARES.2015.01.005

    Article  Google Scholar 

  24. I. U. Teudt, A. E. Nevel, A. D. Izzo, J. T. Walsh, and C. P. Richter, Laryngoscope 117, 1641 (2007). https://doi.org/10.1097/MLG.0b013E318074EC00

    Article  Google Scholar 

  25. E. Smistad, K. F. Johansen, D. H. Iversen, and I. Reinertsen, J. Med. Imag. 5, 044004 (2018). https://doi.org/10.1117/1.JMI.5.4.044004

    Article  Google Scholar 

  26. R. C. Miner, J. Med. Imaging Rad. Sci. 48, 328 (2017). https://doi.org/10.1016/j.jmir.2017.06.005

    Article  Google Scholar 

  27. M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, Nat. Med. 18, 829 (2012). https://doi.org/10.1038/nm.2721

    Article  Google Scholar 

  28. M. Wolf, M. Ferrari, and V. Quaresima, J. Biomed. Opt. 12, 062104 (2007). https://doi.org/10.1117/1.2804899

    Article  ADS  Google Scholar 

  29. M. Ferrari and V. Quaresima, Neuro Image 63, 921 (2012). https://doi.org/10.1016/J.NEUROIMAGE.2012.03.049

    Google Scholar 

  30. M. A. Yucel, J. J. Selb, T. J. Huppert, M. A. Franceschini, and D. A. Boas, Curr. Opin. Biomed. Eng. 4, 78 (2017). https://doi.org/10.1016/J.COBME.2017.09.011

    Article  Google Scholar 

  31. Handbook of Optical Biomedical Diagnostics, Ed. by V. V. Tuchin (Fizmatlit, Moscow, 2007; SPIE, Bellingham, 2002), Vol. 1.

  32. V. V. Tuchin, J. Biomed. Photon. Eng. 1, 98 (2015). https://doi.org/10.18287/JBPE-2015-1-2-98

    Article  Google Scholar 

  33. D. Chitnis, D. Airantzis, D. Highton, R. Williams, P. Phan, V. Giagka, S. Powell, R. J. Cooper, I. Tachtsidis, M. Smith, C. E. Elwell, J. C. Hebden, and N. Everdell, Rev. Sci. Instrum. 87, 065112 (2016). https://doi.org/10.1063/1.4954722

    Article  ADS  Google Scholar 

  34. M. Mazurenka, L. di Sieno, G. Boso, D. Contini, A. Pifferi, A. D. Mora, A. Tosi, H. Wabnitz, and R. Macdonald, Biomed. Opt. Express 4, 2257 (2013). https://doi.org/10.1364/BOE.4.002257

    Article  Google Scholar 

  35. A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, J. Biomed. Opt. 21, 091310 (2016). https://doi.org/10.1117/1.JBO.21.9.091310

    Article  ADS  Google Scholar 

  36. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Opt. Eng. 34, 32 (1995). https://doi.org/10.1117/12.183988

    Article  ADS  Google Scholar 

  37. S. Fantini, M. A. Franceschini, and E. Gratton, J. Opt. Soc. Am. B 11, 2128 (1994). https://doi.org/10.1364/JOSAB.11.002128

    Article  ADS  Google Scholar 

  38. S. L. Jacques, Phys. Med. Biol. 58 (11), R37 (2016). https://doi.org/10.1088/0031-9155/58/11/R37

    Article  Google Scholar 

  39. V. V. Tuchin, J. Biomed. Photon. Eng. 1, 3 (2015). https://doi.org/10.18287/JBPE-2015-1-1-3

    Article  Google Scholar 

  40. ISS Inc., Tissue Oximeter OxiplexTS. http://www.iss.com/biomedical/instruments/oxiplexTS.html.

  41. S. Brigadoi, L. Ceccherini, S. Cutini, F. Scarpa, P. Scatturin, J. Selb, L. Gagnon, D. A. Boas, and R. J. Cooper, Neuro Image 85, 181 (2014). https://doi.org/10.1016/j.neuroimage.2013.04.082

    Google Scholar 

  42. G. M. Katyba, K. I. Zaytsev, I. N. Dolganova, I. A. Shikunova, N. V. Chernomyrdin, S. O. Yurchenko, G. A. Komandin, I. V. Reshetov, V. V. Nesvizhevsky, and V. N. Kurlov, Prog. Cryst. Growth Charact. Mater. 64, 133 (2018). https://doi.org/10.1016/j.pcrysgrow.2018.10.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Safonova.

Ethics declarations

All procedures carried out in the study with the participation of human beings comply with the ethical standards of institutional and/or national research ethics committees and the 1964 Helsinki Declaration and its later amendments or comparable standards of ethics.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

The 22nd Annual Conference Saratov Fall Meeting 2018 (SFM’18): VI International Symposium “Optics and Biophotonics” and XXII International School for Junior Scientists and Students on Optics, Laser Physics, and Biophotonics, September 24–29, 2018, Saratov, Russia. https://www.sgu.ru/structure/fiz/saratov-fall-meeting/previousconferences/saratov-fall-meeting-2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonova, L.P., Orlova, V.G. & Shkarubo, A.N. Investigation of Neurovascular Structures Using Phase-Modulation Spectrophotometry. Opt. Spectrosc. 126, 745–757 (2019). https://doi.org/10.1134/S0030400X19060201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19060201

Navigation