Skip to main content
Log in

Wide-Aperture Aspheric Optics for Formation of Subwavelength Caustics of a Terahertz Electromagnetic-Radiation Beam

  • Geometrical and Applied Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A wide-aperture aspheric lens for focusing a terahertz electromagnetic-radiation beam in a circle of the subwavelength size is proposed. The calculation of the lens and the estimation of size of created caustic were carried out using computational methods of geometric optics and electrodynamics. The lens is made of high-density polyethylene with the help of a turning machine. For experimental estimation of the spatial resolution provided by the lens, a THz imaging system based on raster scanning of the object’s surface was created. The imaging system was used in combination with wide-aperture THz optics to record images of the streak plates with different spatial frequencies. Analysis of the experimental data showed that the aspheric lens allows the resolution of two objects spaced at a distance of 0.95λ, providing contrast of 15%. The proposed THz optics is superior to classical THz spherical lenses and off-axis parabolic mirrors, greatly expanding the capabilities of THz-spectroscopy methods and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).

    Google Scholar 

  2. H. Rubens and E. F. Nichols, Phys. Rev. (Ser. I) 4, 314 (1897). doi 10.1103/PhysRevSeriesI.4.314

    Article  ADS  Google Scholar 

  3. H. Rubens and F. Kurlbaum, Astrophys. J. 14, 335 (1901).

    Article  ADS  Google Scholar 

  4. E. Berry, G. C. Walker, A. J. Fitzgerald, N. N. Zinov’ev, M. Chamberlain, S. W. Smye, R. E. Miles, and M. A. Smith, J. Laser Appl. 15, 192 (2003).

    Article  Google Scholar 

  5. A. J. Fitzgerald, E. Berry, N. N. Zinov’ev, S. Homer-Vanniasinkam, R. E. Miles, J. M. Chamberlain, and M. A. Smith, J. Biol. Phys. 29, 123 (2003). doi 10.1023/A:1024428406218

    Article  Google Scholar 

  6. G. A. Komandin, E. S. Zhukova, V. I. Torgashev, A. V. Boris, A. A. Boris, E. A. Motovilova, A. S. Prokhorov, L. S. Kadyrov, B. P. Gorshunov, and M. Dressel, J. Appl. Phys. 114, 24102 (2013). doi 10.1063/1.4813496

    Article  Google Scholar 

  7. E. S. Zhukova, V. I. Torgashev, B. P. Gorshunov, V. V. Lebedev, G. S. Shakurov, R. K. Kremer, E. V. Pestrjakov, V. G. Thomas, D. A. Fursenko, A. S. Prokhorov, and M. Dressel, J. Chem. Phys. 140, 224317 (2014). doi 10.1063/1.4882062

    Article  ADS  Google Scholar 

  8. B. Gorshunov, E. Zhukova, V. I. Torgashev, L. S. Kadyrov, E. A. Motovilova, F. Fischgrabe, V. Moshnyaga, T. Zhang, R. Kremer, U. Pracht, S. Zapf, and M. Dressel, Phys. Rev. B 87 (24), 245124 (2013). doi 10.1103/PhysRevB.87.245124

    Article  ADS  Google Scholar 

  9. B. P. Gorshunov, V. I. Torgashev, E. S. Zhukova, V. G. Thomas, M. A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P. V. Tomas, E. V. Pestrjakov, D. A. Fursenko, G. S. Shakurov, et al., Nat. Commun. 7, 12842 (2016). doi 10.1038/ncomms12842

    Article  ADS  Google Scholar 

  10. D. H. Auston, Appl. Phys. Lett. 26, 101 (1975). doi 10.1063/1.88079

    Article  ADS  Google Scholar 

  11. M. van Exter, C. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. 55, 337 (1989). doi 10.1063/1.101901

    Article  ADS  Google Scholar 

  12. C. Cervetti, E. Heintze, B. Gorshunov, E. Zhukova, S. Lobanov, A. Hoyer, M. Burghard, K. Kern, M. Dressel, and L. Bogani, Adv. Mater. 27, 2635 (2015). doi 10.1002/adma.201500599

    Article  Google Scholar 

  13. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995). doi 10.1364/OL.20.001716

    Article  ADS  Google Scholar 

  14. W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007). doi 10.1088/0034-4885/70/8/R02

    Article  ADS  Google Scholar 

  15. Q. Li, Y. Zhou, Y.-F. Yang, and G.-H. Chen, J. Opt. Soc. Am. A 33, 637 (2016). doi 10.1364/JOSAA.33.000637

    Article  ADS  Google Scholar 

  16. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, Opt. Lett. 27, 1312 (2002). doi 10.1364/OL.27.001312

    Article  ADS  Google Scholar 

  17. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, Opt. Lett. 22, 904 (1997). doi 10.1364/OL.22.000904

    Article  ADS  Google Scholar 

  18. O. Cherkasova, M. Nazarov, and A. Shkurinov, Opt. Quantum Electron. 48, 217 (2016). doi 10.1007/s11082- 016-0490-5

    Article  Google Scholar 

  19. E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek, IEEE Trans. Terahertz Sci. Technol. 6, 435 (2016). doi 10.1109/TTHZ.2016.2532344

    Article  ADS  Google Scholar 

  20. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, and Y. Luo, Trends Biotechnol. 34, 810 (2016). doi 10.1016/j.tibtech.2016.04.008

    Article  Google Scholar 

  21. P. F. Taday, Philos. Trans. R. Soc., A 362 (1815), 351 (2004). doi 10.1098/rsta.2003.1321

    Article  ADS  Google Scholar 

  22. J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, J. Pharm. Pharmacol. 59, 209 (2007). doi 10.1211/jpp.59.2.0008

    Article  Google Scholar 

  23. L. M. Ingle, A. M. Jaiswal, P. V. Vaidya, and A. P. Kedar, Int. J. Pharm. Pharm. Sci. Res. 3, 48 (2013).

    Google Scholar 

  24. R. Appleby and H. B. Wallace, IEEE Trans. Antenn. Propag. 55, 2944 (2007). doi 10.1109/TAP.2007.908543

    Article  ADS  Google Scholar 

  25. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, Appl. Phys. Lett. 92, 91117 (2008). doi 10.1063/1.2891082

    Article  Google Scholar 

  26. I. N. Dolganova, K. I. Zaytsev, A. A. Metelkina, V. E. Karasik, and S. O. Yurchenko, Rev. Sci. Instrum. 86, 113704 (2015). doi 10.1063/1.4935495

    Article  ADS  Google Scholar 

  27. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, Opt. Express 16, 17039 (2008). doi 10.1364/OE.16.017039

    Article  ADS  Google Scholar 

  28. F. Ospald, W. Zouaghi, R. Beigang, C. Matheis, J. Jonuscheit, B. Recur, J.-P. Guillet, P. Mounaix, W. Vleugels, P. V. Bosom, L. V. González, I. López, R. M. Edo, Y. Sternberg, and M. Vandewal, Opt. Eng. 53, 31208 (2013). doi 10.1117/1.OE.53.3.031208

    Article  Google Scholar 

  29. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, V. Ryzhii, V. Popov, and W. Knap, Opt. Eng. 53, 31206 (2014). doi 10.1117/1.OE.53.3.031206

    Article  Google Scholar 

  30. Y. H. Lo and R. Leonhardt, Opt. Express 16, 15991 (2008). doi 10.1364/OE.16.015991

    Article  ADS  Google Scholar 

  31. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980).

    Google Scholar 

  32. K. Moon, E. Jung, M. Lim, Y. Do, and H. Han, IEEE Trans. Terahertz Sci. Technol. 1, 164 (2011). doi 10.1109/TTHZ.2011.2159876

    Article  ADS  Google Scholar 

  33. K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, Appl. Phys. Lett. 101, 11109 (2012). http://dx.doi.org/ doi 10.1063/1.4733475

    Article  ADS  Google Scholar 

  34. Y. Kawano and K. Ishibashi, Nat. Photon. 2, 618 (2008). doi 10.1038/nphoton.2008.157

    Article  Google Scholar 

  35. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, Nano Lett. 8, 3766 (2008). doi 10.1021/nl802086x

    Article  ADS  Google Scholar 

  36. M. G. Silveirinha, P. A. Belov, and C. R. Simovski, Phys. Rev. B 75, 35108 (2007). doi 10.1103/Phys- RevB.75.035108

    Article  ADS  Google Scholar 

  37. P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, and Y. Hao, Appl. Phys. Lett. 89, 262109 (2006). doi 10.1063/1.2424557

    Article  ADS  Google Scholar 

  38. P. A. Belov, G. K. Palikaras, Y. Zhao, A. Rahman, C. R. Simovski, Y. Hao, and C. Parini, Appl. Phys. Lett. 97, 191905 (2010). doi 10.1063/1.3516161

    Article  ADS  Google Scholar 

  39. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. Hao, and C. Parini, Phys. Rev. B 77, 193108 (2008). doi 10.1103/PhysRevB.77.193108

    Article  ADS  Google Scholar 

  40. K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, Optica 3, 458 (2016). doi 10.1364/OPTICA.3.000458

    Article  Google Scholar 

  41. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. de Natale, Sci. Rep. 5, 13566 (2015). doi 10.1038/srep13566

    Article  ADS  Google Scholar 

  42. Y. Y. Choporova, B. A. Knyazev, and M. S. Mitkov, IEEE Trans. Terahertz Sci. Technol. 5, 836 (2015). doi 10.1109/TTHZ.2015.2460465

    Article  ADS  Google Scholar 

  43. N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, IEEE Trans. Terahertz Sci. Technol. 6, 464 (2016). doi 10.1109/TTHZ.2016.2530938

    Article  ADS  Google Scholar 

  44. K. McClatchey, M. T. Reiten, and R. A. Cheville, Appl. Phys. Lett. 79, 4485 (2001). doi 10.1063/ 1.1427745

    Article  ADS  Google Scholar 

  45. V. Krozer, T. Löffler, J. Dall, A. Kusk, F. Eichhorn, R. K. Olsson, J. D. Buron, P. U. Jepsen, V. Zhurbenko, and T. Jensen, IEEE Trans. Microwave Theory Technol. 58, 2027 (2010). doi 10.1109/TMTT.2010.2050246

    Article  ADS  Google Scholar 

  46. J. B. Leen, P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, Appl. Phys. Lett. 97, 73111 (2010). doi 10.1063/1.3474801

    Article  Google Scholar 

  47. F. Formanek, M. A. M.-A. Brun, T. Umetsu, S. Omori, and A. Yasuda, Appl. Phys. Lett. 94, 92 (2009). doi 10.1063/1.3072357

    Article  Google Scholar 

  48. Zemax Software. http://www.zemax.com/os/opticstudio.

  49. J. B. Schneider, Understanding the Finite-Difference Time-Domain Method, On-Line Book (2016).

    Google Scholar 

  50. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, UK, 2005).

    MATH  Google Scholar 

  51. G. A. Komandin, S. V. Chuchupal, S. P. Lebedev, Y. G. Goncharov, A. F. Korolev, O. E. Porodinkov, I. E. Spektor, and A. A. Volkov, IEEE Trans. Terahertz Sci. Technol. 3, 440 (2013). doi 10.1109/ TTHZ.2013.2255914

    Article  ADS  Google Scholar 

  52. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005). doi 10.1007/s10762-005-7600-y

    Article  ADS  Google Scholar 

  53. B. P. Gorshunov, A. A. Volkov, A. S. Prokhorov, and I. E. Spektor, Phys. Solid State 50, 2001 (2008). doi 10.1134/S1063783408110012

    Article  ADS  Google Scholar 

  54. M. J. E. Golay, Rev. Sci. Instrum. 18, 347 (1947).

    Article  ADS  Google Scholar 

  55. M. E. Frolov, A. M. Khorokhorov, A. F. Shirankov, Y. B. Golubkov, M. E. Frolov, A. M. Khorokhorov, A. F. Shirankov, and Y. B. Golubkov, in Proceedings of the Joint International Sysposium on Optical Memory and Optical Data Storage, Honolulu, Hawaii, 2005, p. 135.

    Google Scholar 

  56. J. J. M. Braat, Proc. SPIE 3190, 59 (1997). doi 10.1117/12.294417

    Article  ADS  Google Scholar 

  57. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, J. Appl. Phys. 109, 43505 (2011). doi 10.1063/1.3549120

    Article  Google Scholar 

  58. S. Sommer, T. Raidt, B. M. Fischer, F. Katzenberg, J. C. Tiller, and M. Koch, J. Infrared, Millim., Terahertz Waves 37, 189 (2016). doi 10.1007/s10762-015-0219-8

    Article  Google Scholar 

  59. V. A. Kotelnikov, Phys. Usp. 49, 736 (2006). doi 10.1070/PU2006v049n07ABEH006160

    Article  ADS  Google Scholar 

  60. V. P. Wallace, A. J. Fitzgerald, S. Shankar, N. Flanagan, R. Pye, J. Cluff, and D. D. Arnone, Br. J. Dermatol 151, 424 (2004). doi 10.1111/j.1365- 2133.2004.06129.x

    Article  Google Scholar 

  61. R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Arnone, E. H. Linfield, and M. Pepper, J. Invest. Dermatol. 120, 72 (2003). doi 10.1046/j.1523- 1747.2003.12013.x

    Article  Google Scholar 

  62. E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, Appl. Phys. Lett. 84, 2190 (2004). doi 10.1063/1.1688448

    Article  ADS  Google Scholar 

  63. S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, Appl. Phys. Lett. 90, 41102 (2007). doi 10.1063/1.2433035

    Article  Google Scholar 

  64. A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Arnone, Radiology 239, 533 (2006). doi 10.1148/radiol.2392041315

    Article  Google Scholar 

  65. P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, Opt. Express 17, 12444 (2009). doi 10.1364/OE.17.012444

    Article  ADS  Google Scholar 

  66. A. J. Fitzgerald, J. Biomed. Opt. 17, 16005 (2012). doi 10.1117/1.JBO.17.1.016005

    Article  Google Scholar 

  67. K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, Appl. Phys. Lett. 106, 53702 (2015). doi 10.1063/1.4907350

    Article  ADS  Google Scholar 

  68. K. I. Zaitsev, N. V. Chernomyrdin, K. G. Kudrin, I. V. Reshetov, and S. O. Yurchenko, Opt. Spectrosc. 119, 404 (2015). doi 10.1134/S0030400X1509026X

    Article  ADS  Google Scholar 

  69. Ji Y. Bin, S. J. Oh, S.-G. Kang, J. Heo, S.-H. Kim, Y. Choi, S. Song, H. Y. Son, S. H. Kim, J. H. Lee, S. J. Haam, Y. M. Huh, J. H. Chang, C. Joo, and J.-S. Suh, Sci. Rep. 6, 36040 (2016). doi 10.1038/srep36040

    Article  ADS  Google Scholar 

  70. K. Meng, T. Chen, T. Chen, L. Zhu, Q. Liu, Z. Li, F. Li, S. Zhong, Z. Li, H. Feng, and J. Zhao, J. Biomed. Opt. 19, 77001 (2014). doi 10.1117/1.JBO.19.7.077001

    Article  Google Scholar 

  71. A. A. Potapov, S. A. Goryaynov, V. A. Okhlopkov, L. V. Shishkina, V. B. Loschenov, T. A. Savelieva, D. A. Golbin, A. P. Chumakova, M. F. Goldberg, M. D. Varyukhina, and A. Spallone, Neurosurg. Rev 39, 437 (2016). doi 10.1007/s10143-015-0697-0

    Article  Google Scholar 

  72. N. Pustogarov, D. Panteleev, S. A. Goryaynov, A. V. Ryabova, E. Y. Rybalkina, A. Revishchin, A. A. Potapov, and G. Pavlova, Mol. Neurobiol. 54, 5699 (2017). doi 10.1007/s12035-016-0109-7

    Article  Google Scholar 

  73. E. V. Yakovlev, K. I. Zaytsev, I. N. Dolganova, and S. O. Yurchenko, IEEE Trans. Terahertz Sci. Technol. 5, 810 (2015). doi 10.1109/TTHZ.2015.2460671

    Article  ADS  Google Scholar 

  74. G. Ok, K. Park, H. J. Kim, H. S. Chun, and S.-W. Choi, Appl. Opt. 53, 1406 (2014). doi 10.1364/AO.53.001406

    Article  ADS  Google Scholar 

  75. G. Ok, K. Park, H. S. Chun, H.-J. Chang, N. Lee, and S.-W. Choi, Biomed. Opt. Express 6, 1929 (2015). doi 10.1364/BOE.6.001929

    Article  Google Scholar 

  76. P. I. Antonov and V. N. Kurlov, Prog. Cryst. Growth Charact. Mater. 44, 63 (2002). http://dx.doi.org/ doi 10.1016/S0960-8974(02)00005-0

    Article  Google Scholar 

  77. Sapphire: Properties, Growth, and Applications. Reference Module in Materials Science and Materials Engineering, Ed. by S. Hashmi (Elsevier, Oxford, 2016), p. 1.

    Google Scholar 

  78. V. N. Kurlov and B. M. Epelbaum, J. Cryst. Growth 179, 175 (1997). doi 10.1016/S0022-0248(97)00111-5

    Article  ADS  Google Scholar 

  79. V. N. Kurlov, S. N. Rossolenko, N. V. Abrosimov, and K. Lebbou, Crystal Growth Processes Based on Capillarity (Wiley, Chichester, UK, 2010), p. 277. doi 10.1002/9781444320237.ch5

    Book  Google Scholar 

  80. N. Abrosimovi, Prog. Cryst. Growth Charact. Mater. 46, 1 (2003). doi 10.1016/S0960-8974(03)90001-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chernomyrdin.

Additional information

Original Russian Text © N.V. Chernomyrdin, A.O. Shchadko, S.P. Lebedev, I.E. Spektor, V.L. Tolstoguzov, A.S. Kucheryavenko, K.M. Malakhov, G.A. Komandin, V.S. Gorelik, K.I. Zaytsev, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 3, pp. 420–428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernomyrdin, N.V., Shchadko, A.O., Lebedev, S.P. et al. Wide-Aperture Aspheric Optics for Formation of Subwavelength Caustics of a Terahertz Electromagnetic-Radiation Beam. Opt. Spectrosc. 124, 428–436 (2018). https://doi.org/10.1134/S0030400X18030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18030086

Navigation