Skip to main content
Log in

Decay of electronic excitations in CdS and CdS/ZnS colloidal quantum dots: spectral and kinetic investigations

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using the spectral methods of induced absorption, luminescence, and photostimulated luminescence flash, we have experimentally investigated processes of decay of electronic excitations in CdS colloidal quantum dots and in CdS/ZnS “core-shell” systems synthesized in gelatin by the sol-gel method. It has been shown that the decay of electronic excitations in colloidal quantum dots of this type is predominantly related to a fast localization of nonequilibrium charge carriers on surface defects and their subsequent recombination during times on the order of units and tens of picoseconds. The passage to core-shell systems eliminates, to a large extent, surface defects of the core, some of which are luminescence centers. However, upon using the sol-gel synthesis, a noticeable fraction of luminescence centers are formed in the interior of the CdS quantum dot, which, as well as in the case of CdS/ZnS systems, ensures localization of exciton, blocks its direct annihilation, and maintains recombination radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Pal, Y. Ghosh, S. Brovelli, et al., Nano Lett. 12, 331 (2012).

    Article  ADS  Google Scholar 

  2. D. A. Bussian, S. A. Crooker, M. Y. M. Brynda, et al., Nature Material Letters 8, 35 (2009).

    Article  ADS  Google Scholar 

  3. D. Bera, L. Qian, T.-K. Tseng, et al., Materials 3, 2260 (2010).

    Article  ADS  Google Scholar 

  4. V. A. Oleinikov, A. V. Sukhanova, and I. R. Nabiev, Ros. Nanotekhnologii 2, 160 (2007).

    Google Scholar 

  5. F. Greerinckx, F. M. Peeters, and J. T. Devreese, J. Appl. Phys. 68(7), 3435 (1990).

    Article  ADS  Google Scholar 

  6. D. Schooss, A. Mews, A. Eychmuller, et al., Phys. Rev. B 49(24), 17072 (1994).

    Article  ADS  Google Scholar 

  7. O. E. Rayevska, G. Y. Grodzyuk, and V. M. Dzhagan, J. Phys. Chem. 114, 22478 (2010).

    Google Scholar 

  8. J. W. Haus, H. S. Zhou, I. Honma, et al., Phys. Rev. 47(3), 1359 (1993).

    Article  ADS  Google Scholar 

  9. R. Tsu, D. Babic, and L. Ioriatti, J. Appl. Phys. 82(3), 1327 (1997).

    Article  ADS  Google Scholar 

  10. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  Google Scholar 

  11. A. I. Ekimov, I. A. Kudryavtsev, M. G. Ivanov, et al., J. Lumin. 46, 83 (1990).

    Article  Google Scholar 

  12. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. 35(15), 8113 (1987).

    Article  ADS  Google Scholar 

  13. Y. Wang, A. Suna, and J. McHugh, J. Chem. Phys. 92(11), 6927 (1990).

    Article  ADS  Google Scholar 

  14. L. Spanhel, M. Haase, H. Weller, et al., J. Am. Chem. Soc. 109, 5649 (1987).

    Article  Google Scholar 

  15. A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, et al., Phys. Rev. B 68, 165306 (2003).

    Article  ADS  Google Scholar 

  16. P. Reiss, M. Protiere, and L. Li, Small 5(2), 154 (2009).

    Article  Google Scholar 

  17. A. N. Latyshev, O. V. Ovchinnikov, M. S. Smirnov, et al., Opt. Spektrosk. 109(5), 779 (2010).

    Article  Google Scholar 

  18. T. Dannhauser, M. O’ Neil, K. Johansson, et al., J. Phys. Chem. 90, 6074 (1986).

    Article  Google Scholar 

  19. N. V. Bondar’, M. S. Brodin, and G. M. Tel’biz, Fiz. Tekh. Poluprovodn. (St. Petersburg) 40(8), 948 (2006).

    Google Scholar 

  20. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, et al., Teor. Eksp. Khim. 48(1), 43 (2012).

    Google Scholar 

  21. O. B. Gusev, A. A. Prokof’ev, O. A. Maslova, et al., Pis’ma Zh.Eksp. Teor. Fiz. 93, 162 (2011).

    Google Scholar 

  22. A. V. Sachenko and Yu. V. Kryuchenko, Fiz. Tekh. Poluprovodn. (St. Petersburg) 38(1), 108 (2004).

    Google Scholar 

  23. A. N. Latyshev, O. V. Ovchinnikov, M. S. Smirnov, et al., Zh. Prikl. Spektrosk. 72(2), 213 (2005).

    Google Scholar 

  24. N. V. Korolev, S. E. Starodubtsev, E. N. Bormontov, et al., Kondensirovannye Sredy Mezhfaznye Granitsy 13(1), 67 (2011).

    Google Scholar 

  25. V. D. Krevchik and A. V. Levashov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36(2), 216 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Smirnov.

Additional information

Original Russian Text © M.S. Smirnov, D.I. Stasel’ko, O.V. Ovchinnikov, A.N. Latyshev, O.V. Buganov, S.A. Tikhomirov, A.S. Perepelitsa, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 5, pp. 737–746.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, M.S., Stasel’ko, D.I., Ovchinnikov, O.V. et al. Decay of electronic excitations in CdS and CdS/ZnS colloidal quantum dots: spectral and kinetic investigations. Opt. Spectrosc. 115, 651–659 (2013). https://doi.org/10.1134/S0030400X13110246

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13110246

Keywords

Navigation