Skip to main content
Log in

Photodynamics of intramolecular proton transfer in polar and nonpolar biflavonoid solutions

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using methods of steady state luminescence and femtosecond spectroscopy, we have studied the mechanism of intramolecular proton transfer in synthesized 3,7-dihydroxy-2,8-di(4-methoxyphenyl)-4H,6H-pyrano[3,2-g]chromen-4,6-dion in polar and nonpolar solutions, films, and polycrystals at 293 and 77 K. In an excited singlet state, intramolecular proton transfer occurs in two stages. At the first stage, a tautomer with one transferred proton (OTP tautomer) is formed from the Franck-Condon state within τ1 = 0.6 ps. At the second stage, the second proton is transferred within τ2 = 3.1 ps and a tautomer with two transferred protons (TTP tautomer) is formed, which fluoresces in toluene at 293 K with a high quantum yield, Φ f = 0.66, and the fluorescence spectrum of which is characterized by a large Stokes shift, 9900 cm−1. At 293 K, polar solvents (dimethylformamide, dimethyl sulfoxide, ethanol, etc.) solvate the BFV molecule in the ground state, while, in the excited state, an OTP tautomer is mainly formed. In polar ethanol at 77 K, a dual fluorescence spectrum is observed, which is caused by the fluorescence emission of polysolvates with λ fmax = 460 nm and TTP phototautomers at λ fmax = 610 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Harborne and C. A. Williams, Phytochemistry 55, 481 (2000).

    Article  Google Scholar 

  2. T. Leighton, C. Ginther, L. Fluss, W. Harter, J. Causado, and V. Notario, in Phenolic Compounds in Foods and Their Effects on Health II, Ed. by M.T. Huang, C. T. Ho, and C.Y. Lee (Am. Chem. Soc., Washington, 1992), Am. Chem. Soc. Symp. Ser., Vol. 507.

    Google Scholar 

  3. T. Fotsis, M. Peppov, H. Adlercreutz, G. Fleischmann, T. Hare, R. Montesano, and L. Schwigerer, Proc. Natl. Acad. Sci. USA 90, 2690 (1993).

    Article  ADS  Google Scholar 

  4. A. Coghlan, New Sci. 14, 14 (1998).

    Google Scholar 

  5. Y. Cao and R. Cao, Nature 398, 381 (1999).

    Article  ADS  Google Scholar 

  6. M. L. Martinez, L. S. Shannong, and P. T. Chou, J. Am. Chem. Soc. 113, 5881 (1991).

    Article  Google Scholar 

  7. J. C. Valle, J. Chem. Phys. 124, 104506 (2006).

    Article  ADS  Google Scholar 

  8. D. McMorrow, T. J. Aartsma, and M. Kasha, J. Phys. Chem. 88, 4596 (1984).

    Article  Google Scholar 

  9. T. C. Swinney and D. F. Kelley, J. Chem. Phys. 99, 211 (1993).

    Article  ADS  Google Scholar 

  10. V. I. Tomin and R. Jaworski, Opt. Spectrosc. 109(4), 567 (2010).

    Article  ADS  Google Scholar 

  11. A. Sytnik and M. Kasha, Proc. Natl. Acad. Sci. USA 91, 8627 (1994).

    Article  ADS  Google Scholar 

  12. A. Douhal, S. K. Kim, and A. H. Zewail, Nature 378, 260 (1995).

    Article  ADS  Google Scholar 

  13. A. D. Roshal, A. V. Grigorovich, A. O. Doroshenko, V.G. Pivovarenko, and A. P. Demchenko, J. Phys. Chem. A 102, 5907 (1998).

    Article  Google Scholar 

  14. D. McMorrow and M. Kasha, J. Phys. Chem. 88, 2235 (1984).

    Article  Google Scholar 

  15. S. K. K. Jatkar and B. H. Mattoo, J. Ind. Chem. Soc. 33, 641 (1956).

    Google Scholar 

  16. Yu. L. Frolov, Yu. M. Sapozhnikov, S. S. Barer, N. N. Pogodaeva, and N. A. Tyukavina, Izv. Akad. Nauk SSSR, Ser. Khim., No. 10, 2364 (1974).

  17. P. K. Sengupta and M. Kasha, Chem. Phys. Lett. 68, 382 (1979).

    Article  ADS  Google Scholar 

  18. F. Plasser, M. Barbatti, A. J. A. Aquino, and H. Lishka, J. Phys. Chem. A 113, 8490 (2009).

    Article  Google Scholar 

  19. C. H. Kim, J. Park, J. Seo, S. Y. Park, and T. Joo, J. Phys. Chem. A 114, 568 (2010).

    Google Scholar 

  20. H. Wang, H. Zhang, O. K. Abou-Zied, C. Yu, F. E. Romesberg, and M. Glasbeek, Chem. Phys. Lett. 367, 599 (2003).

    Article  ADS  Google Scholar 

  21. H. Bulska, Chem. Phys. Lett. 98, 398 (1983).

    Article  ADS  Google Scholar 

  22. W. Sanger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984).

    Book  Google Scholar 

  23. V. G. Pivovarenko, L. Jóźwiak, and J. Błaźejowski, Eur. J. Org. Chem. 3979 (2002).

  24. E. Falkovskaia, V. G. Pivovarenko, and J. C. Valle, J. Phys. Chem. A 107, 3316 (2003).

    Article  Google Scholar 

  25. A. N. Nemkovich, V. Bauman, E. V. Kruchenok, G. I. Kurilo, V. G. Pivovarenko, and A. N. Rubinov, Opt. Spectrosc. 110(4), 541 (2011).

    Article  ADS  Google Scholar 

  26. E. A. Borisevich, V. N. Knyukshto, A. N. Kozyrev, and K. N. Solov’ev, Opt. Spektrosk. 74, 210 (1993).

    Google Scholar 

  27. G. D. Egorova, V. N. Knyukshto, K. N. Solov’ev, and M. P. Tsvirko, Opt. Spektrosk. 48, 1101 (1980).

    Google Scholar 

  28. N. A. Borisevich, O. V. Buganov, S. A. Tikhomirov, G. B. Tolstorozhev, and G. L. Shkred, Kvantovaya Elektron. 28, 225 (1999).

    Google Scholar 

  29. O. S. Wolfbtis, A. Knierzinger, and R. Schipfer, J. Photochem. 21, 67 (1983).

    Article  Google Scholar 

  30. C. Reichardt and E. Cornet, Liebigs Ann. Chem. 5, 721 (1983).

    Article  Google Scholar 

  31. D. A. Parthenopolous and M. Kasha, Chem. Phys. Lett. 173, 303 (1990).

    Article  ADS  Google Scholar 

  32. N. J. Turro, Molecular Photochemistry (Benjamin, New York, 1965).

    Google Scholar 

  33. M. C. Etter, Z. Urbanczuk-Lipkowska, S. Baer, and P. F. Barbara, J. Mol. Struct. 144, 155 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Bondarev.

Additional information

Original Russian Text © S.L. Bondarev, V.N. Knyukshto, S.A. Tikhomirov, O.V. Buganov, A.N. Pyrko, 2012, published in Optika i Spektroskopiya, 2012, Vol. 113, No. 4, pp. 444–453.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bondarev, S.L., Knyukshto, V.N., Tikhomirov, S.A. et al. Photodynamics of intramolecular proton transfer in polar and nonpolar biflavonoid solutions. Opt. Spectrosc. 113, 401–410 (2012). https://doi.org/10.1134/S0030400X12070065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X12070065

Keywords

Navigation