Skip to main content
Log in

Nonlinear diffraction in a quantum-dot system with allowance for the Hubbard interaction

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The propagation of monochromatic laser radiation in a volume system of quantum dots (QDs) that are tunnel-coupled along one axis is considered. The electron energy spectrum of the QD system is modeled in the tight-binding approximation with allowance for the Coulomb interaction of electrons in the Hubbard model. The electromagnetic field of laser radiation in a QD system is described quasi-classically by Maxwell equations; as applied to this problem, they are reduced to a non-one-dimensional wave equation for the vector potential. As a result of the analysis of the wave equation in the approximation of varying amplitudes and phases, an effective equation describing the electromagnetic field in a QD system is obtained and numerically solved. The influence of the parameters of the system and the amplitude and frequency of the field of incident laser radiation on the character of its propagation is investigated. Nonmonotonic dependences of the factor characterizing the laser beam diffraction spread on the parameters of the electron energy spectrum of the system are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Bass, A. A. Bulgakov, and A. P. Tetervov, High-Frequency Properties of Semiconductors with Superlattices (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  2. M. Herman, Semiconductor Superlattices (Akademie, Berlin, 1986; Mir, Moscow, 1989).

    Google Scholar 

  3. A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, and S. A. Rykov, Physics of Low-Dimensional Systems (Nauka, St. Petersburg., 2001) [in Russian].

    Google Scholar 

  4. I. P. Suzdalev, Nanotechnology: Physics and Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  5. M. M. Sobolev, G. E. Tsyrlin, A. A. Tonkikh, and N. D. Zakharov, Semiconductors 42(3), 305 (2008).

    Article  ADS  Google Scholar 

  6. M. M. Sobolev, A. P. Vasil’ev, and V. N. Nevedomskii, Semiconductors 44(6), 761 (2010).

    Article  ADS  Google Scholar 

  7. T. Tanamoto, Phys. Rev. A 61(2), 022305 (2000).

    Article  ADS  Google Scholar 

  8. A. A. Ignatov and Yu. A. Romanov, Sov. Phys. Solid State 17(11), 2216 (1975).

    Google Scholar 

  9. E. M. Epshtein, Sov. Phys. Solid State 19(11), 2020 (1977).

    Google Scholar 

  10. M. B. Belonenko, Pis’ma Zh. Tech. Fiz. 35(16), 40 (2009).

    Google Scholar 

  11. M. B. Belonenko and E. G. Fedorov, Opt. Spectrosc. 110(1), 105 (2011).

    Article  ADS  Google Scholar 

  12. Yu. A. Izyumov, Usp. Fiz. Nauk 165(4), 403 (1995).

    Article  Google Scholar 

  13. Yu. A. Izyumov, Usp. Fiz. Nauk 167(5), 465 (1997).

    Article  Google Scholar 

  14. M. B. Belonenko and N. E. Meshcheryakova, J. Russ. Laser Research 29(29), 544 (2008).

    Article  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  16. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1974).

    Google Scholar 

  17. N. N. Akhmediev and A. Ankevich, Solitons (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  18. A. N. Pikhtin, Optical and Quantum Electronics (Vysshaya Shkola, Moscow, 2001) [in Russian].

    Google Scholar 

  19. S. Kunin, Computational Physics (Mir, Moscow, 1992) [in Russian].

    Google Scholar 

  20. V. M. Verzhbitskii, Numerical Methods (Linear Algebra and Nonlinear Equations) (Vysshaya Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  21. A. M. Goncharenko, Gaussian Light Beams (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Belonenko.

Additional information

Original Russian Text © M.B. Belonenko, E.G. Fedorov, 2012, published in Optika i Spektroskopiya, 2012, Vol. 112, No. 2, pp. 274–280.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belonenko, M.B., Fedorov, E.G. Nonlinear diffraction in a quantum-dot system with allowance for the Hubbard interaction. Opt. Spectrosc. 112, 249–254 (2012). https://doi.org/10.1134/S0030400X12020075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X12020075

Keywords

Navigation