Skip to main content
Log in

Role of Cellular DNA Repair Systems in HIV-1 Replication

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

A serious problem in the treatment of HIV infection is the emergence of drug-resistant forms of the virus. One promising approach to solving this problem is the development of inhibitors of the interaction between viral proteins with cellular co-factors. However, the development of this approach is hampered due to the lack of knowledge about the involvement of cellular proteins in the pathogenesis of HIV infection. In particular, it is known that the integration of viral DNA into the host genome generates numerous lesions in the cellular DNA, the repair of which is absolutely necessary for successful replication of the virus. However, it is still unknown which cellular proteins are involved in repairing this damage. In this review, we summarize what is known to date about the role of cellular repair systems in the replication of HIV-1 in general, and in the repair of damage that occurs during the integration of viral DNA into a cell’s genome, in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Laskey S.B., Siliciano R.F. 2014. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat. Rev. Microbiol. 12, 772–780.

    Article  CAS  PubMed  Google Scholar 

  2. Domingo P., Vidal F. 2011. Combination antiretroviral therapy. Expert. Opin. Pharmacother. 12, 995–998.

    Article  PubMed  Google Scholar 

  3. Cihlar T., Fordyce M. 2016. Current status and prospects of HIV treatment. Curr. Opin. Virol. 18, 50–56.

    Article  CAS  PubMed  Google Scholar 

  4. Solomon D.A., Sax P.E. 2015. Current state and limitations of daily oral therapy for treatment. Curr. Opin. HIV AIDS. 10, 219–225.

    Article  CAS  PubMed  Google Scholar 

  5. Iyidogan P., Anderson K.S. 2014. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses. 6, 4095–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adamson C.S., Freed E.O. 2010. Novel approaches to inhibiting HIV-1 replication. Antiviral Res. 85, 119–141.

    Article  CAS  PubMed  Google Scholar 

  7. Tintori C., Brai A., Fallacara A.L., Fazi R., Schenone S., Botta M. 2014. Protein–protein interactions and human cellular cofactors as new targets for HIV therapy. Curr. Opin. Pharmacol. 18, 1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Skalka A.M., Katz R.A. 2005. Retroviral DNA integration and the DNA damage response. Cell Death Differ. 12, 971–978.

    Article  CAS  PubMed  Google Scholar 

  9. Sükösd Z., Andersen E.S., Seemann S.E., Jensen M.K., Hansen M., Gorodkin J., Kjems J. 2015. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain. Nucleic Acids Res. 43, 10168–10179.

    PubMed  PubMed Central  Google Scholar 

  10. Muriaux D., Darlix J.L. 2010. Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol. 7, 744–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engelman A. 2009. Isolation and analysis of HIV-1 preintegration complexes. Methods Mol. Biol. 485, 135–149.

    Article  CAS  PubMed  Google Scholar 

  12. Agapkina Yu.Yu., Prikazchikova T.A., Smolov M.A., Gottikh M.B. 2005. Structure and functions of HIV-1 integrase. Usp. Biol. Khim. 45, 87–122.

    Google Scholar 

  13. Knyazhanskaya e.s., Shadrina O.A., Anisenko A.N., Gottikh M.B. 2016. Role of DNA-dependent protein kinase in the HIV-1 replication cycle. Mol. Biol. (Moscow). 50 (4), 567–579.

    Article  CAS  Google Scholar 

  14. Jackson S.P., Bartek J. 2009. The DNA-damage response in human biology and disease. Nature. 461, 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryan E.L., Hollingworth R., Grand R.J. 2016. Activation of the DNA damage response by RNA viruses. Biomolecules. 6, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Norbury C.J., Zhivotovsky B. 2004. DNA damage-induced apoptosis. Oncogene. 23, 2797–2808.

    Article  CAS  PubMed  Google Scholar 

  17. Yang J., Yu Y., Hamrick H.E., Duerksen-Hughes P.J. 2003. ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis. 24, 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  18. Ciccia A., Elledge S.J. 2010. The DNA damage response: Making it safe to play with knives. Mol. Cell. 40, 179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gagné J.P., Rouleau M., Poirier G.G. 2012. Structural biology. PARP-1 activation – bringing the pieces together. Science. 336, 678–679.

    Article  PubMed  Google Scholar 

  20. Khodyreva S.N., Lavrik O.I. 2016. Poly(ADP-ribose) polymerase 1 as a key regulator of DNA repair. Mol. Biol. (Moscow). 50 (4), 580–595.

    Article  CAS  Google Scholar 

  21. Ko H.L., Ren E.C. 2012. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules. 2, 524–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ceccaldi R., Rondinelli B., D’Andrea A.D. 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64.

    Article  CAS  PubMed  Google Scholar 

  23. Chang H.H., Pannunzio N.R., Adachi N., Lieber M.R. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cannan W.J., Pederson D.S. 2016. Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell Physiol. 231, 3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shinagawa H., Iwasaki H. 1996. Processing the Holliday junction in homologous recombination. Trends Biochem. Sci. 21, 107–111.

    Article  CAS  PubMed  Google Scholar 

  26. Abbotts R., Wilson D.M. 2017. Coordination of DNA single strand break repair. Free Radic. Biol. Med. 107, 228–244.

    Article  CAS  PubMed  Google Scholar 

  27. Krokan H.E., Bjørås M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lans H., Marteijn J.A., Vermeulen W. 2012. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin. 5, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kunkel T.A., Erie D.A. 2015. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49, 291–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brin E., Yi J., Skalka A.M., Leis J. 2000. Modeling the late steps in HIV-1 retroviral integrase-catalyzed DNA integration. J. Biol. Chem. 275, 39287–39295.

    Article  CAS  PubMed  Google Scholar 

  31. Miller M.D., Wang B., Bushman F.D. 1995. Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J. Virol. 69, 3938–3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Daniel R., Katz R.A., Skalka A.M. 1999. A role for DNA-PK in retroviral DNA integration. Science. 284, 644–647.

    Article  CAS  PubMed  Google Scholar 

  33. Sakurai Y., Komatsu K., Agematsu K., Matsuoka M. 2009. DNA double strand break repair enzymes function at multiple steps in retroviral infection. Retrovirology. 6, 114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daniel R., Greger J.G., Katz R.A., Taganov K.D., Wu X., Kappes J.C., Skalka A.M. 2004. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J. Virol. 78, 8573–8581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coffin J.M., Rosenberg N. 1999. Retroviruses. Closing the joint. Nature. 399, 413–416.

    Article  CAS  PubMed  Google Scholar 

  36. Baekelandt V., Claeys A., Cherepanov P., De Clercq E., De Strooper B., Nuttin B., Debyser Z. 2000. DNA-dependent protein kinase is not required for efficient lentivirus integration. J. Virol. 74, 11278–11285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daniel R., Katz R.A., Merkel G., Hittle J.C., Yen T.J., Skalka A.M. 2001. Wortmannin potentiates integrase-mediated killing of lymphocytes and reduces the efficiency of stable transduction by retroviruses. Mol. Cell Biol. 21, 1164–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li L., Olvera J.M., Yoder K.E., Mitchell R.S., Butler S.L., Lieber M., Martin S.L., Bushman F.D. 2001. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Studamire B., Goff S.P. 2008. Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors. Retrovirology. 5, 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng Y., Ao Z., Wang B., Jayappa K.D., Yao X. 2011. Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J. Biol. Chem. 286, 17722–17735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anisenko A.N., Knyazhanskaya E.S., Zalevsky A.O., Agapkina J.Y., Sizov A.I., Zatsepin T.S., Gottikh M.B. 2017. Characterization of HIV-1 integrase interaction with human Ku70 protein and initial implications for drug targeting. Sci. Rep. 7, 5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeanson L., Subra F., Vaganay S., Hervy M., Marangoni E., Bourhis J., Mouscadet J.F. 2002. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology. 300, 100–108.

    Article  CAS  PubMed  Google Scholar 

  43. Waninger S., Kuhen K., Hu X., Chatterton J.E., Wong-Staal F., Tang H. 2004. Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J. Virol. 78, 12829–12837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manic G., Maurin-Marlin A., Laurent F., Vitale I., Thierry S., Delelis O., Dessen P., Vincendeau M., Leib-Mösch C., Hazan U., Mouscadet J.F., Bury-Moné S. 2013. Impact of the Ku complex on HIV-1 expression and latency. PLoS One. 8, e69691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Espeseth A.S., Fishel R., Hazuda D., Huang Q., Xu M., Yoder K., Zhou H. 2011. siRNA screening of a targeted library of DNA repair factors in HIV infection reveals a role for base excision repair in HIV integration. PLoS One. 6, e17612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hultquist J.F., Schumann K., Woo J.M., Manganaro L., McGregor M.J., Doudna J., Simon V., Krogan N.J., Marson A. 2016. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV–host interactions in primary human T cells. Cell Rep. 17, 1438–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Appelqvist H., Johansson A.C., Linderoth E., Johansson U., Antonsson B., Steinfeld R., Kågedal K., Ollinger K. 2012. Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. Ann. Clin. Lab. Sci. 42, 231–242.

    CAS  PubMed  Google Scholar 

  48. Cooper A., García M., Petrovas C., Yamamoto T., Koup R.A., Nabel G.J. 2013. HIV integration and T cell death: Additional commentary. Retrovirology. 10, 150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Skalka A.M. 2013. HIV: Integration triggers death. Nature. 498, 305–306.

    Article  CAS  PubMed  Google Scholar 

  50. Estaquier J., Zaunders J., Laforge M. 2013. HIV integrase and the swan song of the CD4 T cells? Retrovirology. 10, 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dehart J.L., Andersen J.L., Zimmerman E.S., Ardon O., An D.S., Blackett J., Kim B., Planelles V. 2005. The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J. Virol. 79, 1389–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau A., Swinbank K.M., Ahmed P.S., Taylor D.L., Jackson S.P., Smith G.C., O’Connor M.J. 2005. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat. Cell Biol. 7, 493–500.

    Article  CAS  PubMed  Google Scholar 

  53. Smith J.A., Wang F.X., Zhang H., Wu K.J., Williams K.J., Daniel R. 2008. Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol. J. 5, 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Awasthi P., Foiani M., Kumar A. 2016. ATM and ATR signaling at a glance. J. Cell Sci. 129, 1285.

    Article  CAS  PubMed  Google Scholar 

  55. Yan S., Sorrell M., Berman Z. 2014. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol. Life Sci. 71, 3951–3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Durocher D., Jackson S.P. 2001. DNA-PK, ATM and ATR as sensors of DNA damage: Variations on a theme? Curr. Opin. Cell Biol. 13, 225–231.

    Article  CAS  PubMed  Google Scholar 

  57. Daniel R., Kao G., Taganov K., Greger J.G., Favorova O., Merkel G., Yen T.J., Katz R.A., Skalka A.M. 2003. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc. Natl. Acad. Sci. U. S. A. 100, 4778–4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ariumi Y., Turelli P., Masutani M., Trono D. 2005. DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J. Virol. 79, 2973–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kameoka M., Nukuzuma S., Itaya A., Tanaka Y., Ota K., Ikuta K., Yoshihara K. 2004. RNA interference directed against poly(ADP-ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J. Virol. 78, 8931–8934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kameoka M., Nukuzuma S., Itaya A., Tanaka Y., Ota K., Inada Y., Ikuta K., Yoshihara K. 2005. Poly(ADP-ribose) polymerase-1 is required for integration of the human immunodeficiency virus type 1 genome near centromeric alphoid DNA in human and murine cells. Biochem. Biophys. Res. Commun. 334, 412–417.

    Article  CAS  PubMed  Google Scholar 

  61. Gäken J.A., Tavassoli M., Gan S.U., Vallian S., Giddings I., Darling D.C., Galea-Lauri J., Thomas M.G., Abedi H., Schreiber V., Ménissier-de Murcia J., Collins M.K., Shall S., Farzaneh F. 1996. Efficient retroviral infection of mammalian cells is blocked by inhibition of poly(ADP-ribose) polymerase activity. J. Virol. 70, 3992–4000.

    PubMed  PubMed Central  Google Scholar 

  62. Ha H.C., Juluri K., Zhou Y., Leung S., Hermankova M., Snyder S.H. 2001. Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. Proc. Natl. Acad. Sci. U. S. A. 98, 3364–3368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Siva A.C., Bushman F. 2002. Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. J. Virol. 76, 11904–11910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rom S., Reichenbach N.L., Dykstra H., Persidsky Y. 2015. The dual action of poly(ADP-ribose) polymerase-1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity. Front. Microbiol. 6, 878.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bueno M.T., Reyes D., Valdes L., Saheba A., Urias E., Mendoza C., Fregoso O.I., Llano M. 2013. Poly(ADP-ribose) polymerase 1 promotes transcriptional repression of integrated retroviruses. J. Virol. 87, 2496–2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoder K.E., Bushman F.D. 2000. Repair of gaps in retroviral DNA integration intermediates. J. Virol. 74, 11191–11200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoder K.E., Espeseth A., Wang X.H., Fang Q., Russo M.T., Lloyd R.S., Hazuda D., Sobol R.W., Fishel R. 2011. The base excision repair pathway is required for efficient lentivirus integration. PLoS One. 6, e17862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Goetze R.W., Kim D.H., Schinazi R.F., Kim B. 2017. A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase β is dispensable for HIV-1 infection in dividing and nondividing cells. J. Biol. Chem. 292, 14016–14025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bennett G.R., Peters R., Wang X.H., Hanne J., Sobol R.W., Bundschuh R., Fishel R., Yoder K.E. 2014. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference. PLoS One. 9, e103164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Anisenko A.N., Knyazhanskaya E.S., Isaguliants M.G., Gottikh M.B. 2018. A qPCR assay for measuring the post-integrational DNA repair in HIV-1 replication. J. Virol. Methods. 262, 12–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Anisenko.

Additional information

Translated by D. Timchenko

Abbreviations: PIC, pre-integration complex; PI3K, phosphoinositide-3-kinase; DNA-PK, DNA-dependent protein kinase; ATM, аtaxia telangiectasia mutated protein; ATR, serine–threonine protein kinase, or ataxia-telangiectasia and Rad3-related protein; DNA-PKcs, catalytic subunit of DNA-PK; PARP, poly(АDP-ribose)-polymerase; NHEJ, non-homologous end joining repair mechanism; HR, homologous recombination; LigIV, ligase IV; RPA, replication protein A; AP site, apurinic/apyrimidinic site; BER, base excision repair; NER, nucleotide excision repair; RT, HIV-1 reverse transcriptase; IN, HIV-1 integrase; VSV-G, surface glycoprotein G of vesicular stomatitis virus; RSV, Rous sarcoma virus; MMLV, Moloney murine leukemia virus; A-MuLV, Abelson murine leukemia virus; MEF, mouse embryonic fibroblasts; MOI, multiplicity of infection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisenko, A.N., Gottikh, M.B. Role of Cellular DNA Repair Systems in HIV-1 Replication. Mol Biol 53, 313–322 (2019). https://doi.org/10.1134/S0026893319030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319030026

Keywords:

Navigation