Skip to main content
Log in

Detection of DNA Methylation by Dnmt3a Methyltransferase using Methyl-Dependent Restriction Endonucleases

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

DNA methylation at cytosine residues in CpG sites by DNA methyltransferases (MTases) is associated with various cell processes. Eukaryotic MTase Dnmt3a is the key enzyme that establishes the de novo methylation pattern. A new in vitro assay for DNA methylation by murine MTase Dnmt3a was developed using methyl-dependent restriction endonucleases (MD-REs), which specifically cleave methylated DNA. The Dnmt3a catalytic domain (Dnmt3a-CD) was used together with KroI and PcsI MD-REs. The assay consists in consecutive methylation and cleavage of fluorescently labeled DNA substrates, then the reaction products are visualized in polyacrylamide gel to determine the DNA methylation efficiency. Each MD-RE was tested with various substrates, including partly methylated ones. PcsI was identified as an optimal MDRE. PcsI recognizes two methylated CpG sites located 7 bp apart, the distance roughly corresponding to the distance between the active centers of the Dnmt3a-CD tetramer. An optimal substrate was designed to contain two methylated cytosine residues and two target cytosines in the orientation suitable for methylation by Dnmt3a-CD. The assay is reliable, simple, and inexpensive and, unlike conventional methods, does not require radioactive compounds. The assay may be used to assess the effectiveness of Dnmt3a inhibitors as potential therapeutic agents and to investigate the features of the Dnmt3a-CD function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MTase:

C5-cytosine DNA methyltransferase

RE:

restriction endonuclease

MD-RE:

methyl-dependent restriction endonuclease

AdoMet:

S-adenosyl-L-methionine

References

  1. Bestor T.H. 2000. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402.

    Article  CAS  PubMed  Google Scholar 

  2. Moore L.D., Le T., Fan G. 2013. DNA methylation and its basic function. Neuropsychopharmacology. 38, 23–38.

    Article  CAS  PubMed  Google Scholar 

  3. Jurkowska R.Z., Jurkowski T.P., Jeltsch A. 2011. Structure and function of mammalian DNA methyltransferases. ChemBioChem. 12, 206–222.

    Article  CAS  PubMed  Google Scholar 

  4. Bird A. 1999. DNA methylation de novo. Science. 286, 2287–2288.

    Article  CAS  PubMed  Google Scholar 

  5. Gros C., Fahy J., Halby L., et al. 2012. DNA methylation inhibitors in cancer: Recent and future approaches. Biochimie. 94, 2280–2296.

    Article  CAS  PubMed  Google Scholar 

  6. Jia D., Jurkowska R.Z., Zhang X., et al. 2007. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature. 449, 248–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lukashevich O.V., Baskunov V.B., Darii M.V., et al. 2011. Dnmt3a-CD is less susceptible to bulky benzo[a]pyrene diol epoxide-derived DNA lesions than prokaryotic DNA methyltransferases. Biochemistry. 50, 875–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang L., Rau R., Goodell M.A. 2015. DNMT3A in haematological malignancies. Nat. Rev. Cancer. 15, 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brennan C.A., Van Cleve M.D., Gumport R.I. 1986. The effects of base analogue substitutions on the methylation by the EcoRI modification methylase of octadeoxyribonucleotides containing modified EcoRI recognition sequences. J. Biol. Chem. 261, 7279–7286.

    CAS  PubMed  Google Scholar 

  10. Roth M., Jeltsch A. 2000. Biotin–avidin microplate assay for the quantitative analysis of enzymatic methylation of DNA by DNA methyltransferases. Biol. Chem. 381, 269–272.

    Article  CAS  PubMed  Google Scholar 

  11. Hübscher U., Pedrali-Noy G., Knust-Kron B., et al. 1985. DNA methyltransferases: Activity minigel analysis and determination with DNA covalently bound to a solid matrix. Anal. Biochem. 150, 442–448.

    Article  PubMed  Google Scholar 

  12. Jeltsch A., Friedrich T., Roth M. 1998. Kinetics of methylation and binding of DNA by the EcoRV adenine-N6 methyltransferase. J. Mol. Biol. 275, 747–758.

    Article  CAS  PubMed  Google Scholar 

  13. Jurkowska R.Z., Ceccaldi A., Zhang Y., et al. 2011. DNA methyltransferase assays. Epigenet. Protoc. 791, 157–177.

    Article  CAS  Google Scholar 

  14. Ivanov A.A., Koval V.S., Susova O.Y., et al. 2015. DNA specific fluorescent symmetric dimeric bisbenzimidazoles DBP(n): The synthesis, spectral properties, and biological activity. Bioorg. Med. Chem. Lett. 25, 2634–2638.

    Article  CAS  PubMed  Google Scholar 

  15. Cherepanova N.A., Ivanov A.A., Maltseva D.V., et al. 2011. Dimeric bisbenzimidazoles inhibit the DNA methylation. catalyzed by the murine Dnmt3a catalytic domain. J. Enzym. Inhib. Med. Chem. 26, 295–300.

    CAS  Google Scholar 

  16. Zemlyanskaya E.V., Degtyarev S.K. 2013. Substrate specificity and properties of methyl-directed site-specific DNA endonucleases. Mol. Biol. (Moscow). 47 (6), 784–795.

    Article  CAS  Google Scholar 

  17. Chernukhin V.A., Kileva E.V., Tomilova Yu.E., et al. 2011. New methyl-dependent site-specific endonuclease KroI recognizes and cleaves 5'-G C (5mC)GGC-3' DNA sequence. Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu.A. Ovchinnikova. 7, 14–20.

    Google Scholar 

  18. Chernukhin V.A., Nayakshina T.N., Tarasova G.V., et al. 2009. RF Patent 2377294.

  19. Baskunov V.B., Subach F.V., Kolbanovskiy A., et al. 2005. Effects of benzo[a]pyrene-deoxyguanosine lesions on DNA methylation catalyzed by EcoRII DNA methyltransferase and on DNA cleavage effected by EcoRII restriction endonuclease. Biochemistry. 44, 1054–1066.

    Article  CAS  PubMed  Google Scholar 

  20. Darii M.V., Cherepanova N.A., Subach O.M., et al. 2009. Mutational analysis of the CG recognizing DNA methyltransferase SssI: Insight into enzyme–DNA interactions. Biochim. Biophys. Acta, Proteins Proteomics. 1794, 1654–1662.

    Article  CAS  Google Scholar 

  21. Jurkowska R.Z., Siddique A.N., Jurkowski T.P., Jeltsch A. 2011. Approaches to enzyme and substrate design of the murine Dnmt3a DNA methyltransferase. ChemBioChem. 12, 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  22. Kirsanova O.V., Sergeev A.V., Yasko I.S., Gromova E.S. 2017. The impact of 6-thioguanine incorporation into DNA on the function of DNA methyltransferase Dnmt3a. Nucleosides, Nucleotides Nucleic Acids 36, 392–405.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen-Karni D., Xu D., Apone L., et al. 2011. The MspJI family of modification-dependent restriction endonucleases for epigenetic studies. Proc. Natl. Acad. Sci. U. S. A. 108, 11040–11045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oakes C.C., La Salle S., Robaire B., Trasler J.M. 2006. Evaluation of a quantitative DNA methylation analysis technique using methylation-sensitive/dependent restriction enzymes and real-time PCR. Epigenetics. 1, 146–152.

    Article  PubMed  Google Scholar 

  25. Yokochi T., Robertson K.D. 2002. Preferential methylation of unmethylated DNA by mammalian de novo DNA methyltransferase Dnmt3a. J. Biol. Chem. 277, 11735–11745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Gromova.

Additional information

Original Russian Text © A.V. Sergeev, O.V. Kirsanova, A.G. Loiko, E.I. Nomerotskaya, E.S. Gromova, 2018, published in Molekulyarnaya Biologiya, 2018, Vol. 52, No. 2, pp. 318–325.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, A.V., Kirsanova, O.V., Loiko, A.G. et al. Detection of DNA Methylation by Dnmt3a Methyltransferase using Methyl-Dependent Restriction Endonucleases. Mol Biol 52, 272–278 (2018). https://doi.org/10.1134/S0026893318020139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318020139

Keywords

Navigation