Skip to main content
Log in

MYC gene family in cereals: Transformations during evolution of hexaploid bread wheat and its relatives

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The transcription factors of the MYC gene family are an integral part of the MYB + MYC + WD40 regulatory complex required to activate the genes of plant flavonoid biosynthesis. The TaMyc1 gene, which controls the synthesis of flavonoid pigments in the grain pericarp, is known in bread wheat (Triticum aestivum L., BBAADD genome, 2n = 6x = 42). In the present work, we identified 10 copies of this gene in the T. aestivum genome, 22 copies in the nearest bread wheat relatives (T. durum, T. urartu, T. monococcum, Aegilops speltoides, Ae. sharonensis, Ae. tauschii). The analysis of genetic similarity of all these genes demonstrated that the MYC gene duplication occurred for the first time in the common diploid ancestor of the Triticeae tribe with the formation of copies in the second and fourth chromosomes. In the members of the Triticum and Aegilops genera, these genes underwent from two to four duplication acts that resulted in the formation of paralogous copies. The orthologs of the MYC genes obtained from ancestral diploid species exist in polyploid species of the Triticum genus (in addition to paralogues). The time of the emergence of individual MYC family members was calculated based on the average speed of accumulation of nucleotide substitutions (k) in the MYC genes (established in this work) and certain number of synonymous substitutions between individual copies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RT-PCR:

reverse transcription polymerase chain reaction

bHLH:

basic helix-loop-helix

MBW:

MYB + bHLH/MYC + WD40

MYB:

myeloblastosis

MYC:

myelocytomatosis

WD40:

structural motif consisting of approximately 40 amino acids ending with W-D dipeptide (tryptophan–aspartic acid)

References

  1. Walker A.R., Davison P.A., Bolognesi-Winfield A.C., et al. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 11, 1337–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baudry A., Heim M.A., Dubreucq B., et al. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39, 366–380.

    Article  CAS  PubMed  Google Scholar 

  3. Li S. 2014. Transcriptional control of flavonoid biosynthesis: Fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signal. Behav. 9, e27522.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Winkel-Shirley B. 2002. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223.

    Article  CAS  PubMed  Google Scholar 

  5. Broun P. 2005. Transcriptional control of flavonoid biosynthesis: A complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr. Opin. Plant Biol. 8, 272–279.

    Article  CAS  PubMed  Google Scholar 

  6. Vailleau F., Daniel X., Tronchet M., et al. 2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc. Natl. Acad. Sci. U. S. A. 99, 10179–10184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stracke R., Ishihara H., Huep G., et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindemose S., O’Shea C., Jensen M.K., et al. 2013. Structure, function and networks of transcription factors involved in abiotic stress responses. Int. J. Mol. Sci. 14, 5842–5878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shoeva O.Y., Gordeeva E.I., Khlestkina E.K. 2014. The regulation of anthocyanin synthesis in the wheat pericarp. Molecules. 19, 20266–20279.

    Article  PubMed  Google Scholar 

  10. Gordeeva E.I., Shoeva O.Y., Khlestkina E.K. 2015. Marker-assisted development of bread wheat nearisogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica. 203, 469–476.

    Article  CAS  Google Scholar 

  11. Khlestkina E.K., Shoeva O.Y., Gordeeva E.I. 2014. Flavonoid biosynthesis genes in wheat. Vavilov. Zh. Genet. Selekts. 18, 784–796.

    Google Scholar 

  12. The INRA URGI (Unité de recherche en Génomique-Info). 2000. URL: https://urgi.versailles.inra.fr/ Cited April 30, 2016.

  13. Wilkinson P.A., Winfield M.O., Barker G.L., et al. 2012. CerealsDB 2.0: An integrated resource for plant breeders and scientists. BMC Bioinformatics. 13, 219.

    Article  PubMed  PubMed Central  Google Scholar 

  14. NCBI R.C. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44 (D1), D7. URL: https://www.ncbi.nlm.nih.gov/ Cited April 30, 2016.

    Article  Google Scholar 

  15. Solovyev V.V. 2007. Statistical approaches in eukaryotic gene prediction. In: Handbook of Statistical Genetics, 3rd ed. Eds. Balding D., Cannings C., Bishop M. Wiley-Interscience.

    Google Scholar 

  16. Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tamura K., Stecher G., Peterson D., et al. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sokal R.R. 1958. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38, 1409–1438.

    Google Scholar 

  19. Nei M., Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426.

    CAS  PubMed  Google Scholar 

  20. Huang S., Sirikhachornkit A., Faris J.D., et al. 2002. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol. Biol. 48, 805–820.

    Article  CAS  PubMed  Google Scholar 

  21. Huang S., Sirikhachornkit A., Su X., et al. 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 99, 8133–8138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rychlik W. 2007. OLIGO 7 primer analysis software. In: Methods in Molecular Biology, vol. 402: PCR Primer Design. Ed. Yuryev A.V. Totowa, NJ: Humana Press Inc., pp 35–59.

    Google Scholar 

  23. Devos K.M., Dubcovsky J., Dvorak J., et al. 1995. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91, 282–288.

    Article  CAS  PubMed  Google Scholar 

  24. Cockram J., White J., Zuluaga D. L., et al. 2010. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc. Natl. Acad. Sci. U. S. A. 107, 21611–21616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ludwig S.R., Habera L.F., Dellaporta S.L., et al. 1989. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. U. S. A. 86, 7092–7096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu J., Anderson B., Wessler S.R. 1996. Isolation and characterization of rice R genes: Evidence for distinct evolutionary paths in rice and maize. Genetics. 142, 1021–1031.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang C., Shu Q. 2007. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chin. Sci. Bull. 52, 3097–3104.

    Article  CAS  Google Scholar 

  28. Adzhieva V.F., Babak O.G., Shoeva O.Y., Kilchevsky A.V., Khlestkina E.K. 2015. Molecular-genetic mechanisms underlying fruit and seed coloration in plants. Vavilov. Zh. Genet. Selekts. 19, 561–573.

    Google Scholar 

  29. Himi E., Taketa S. 2015. Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol. Genet. Genomics. 290, 1287–129.

    Article  CAS  PubMed  Google Scholar 

  30. Shin D.H., Choi M.G., Kang C.S., et al. 2016. A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis. Biochem. Biophys. Res. Commun. 469, 686–691.

    Article  CAS  PubMed  Google Scholar 

  31. Khlestkina E.K., Dobrovolskaya O.B., Leonova I.N., Salina E.A. 2013. Diversification of the duplicated F3h genes in Triticeae. J. Mol. Evol. 76, 261–266.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Strygina.

Additional information

Original Russian Text © K.V. Strygina, E.K. Khlestkina, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 5, pp. 772–779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strygina, K.V., Khlestkina, E.K. MYC gene family in cereals: Transformations during evolution of hexaploid bread wheat and its relatives. Mol Biol 51, 674–680 (2017). https://doi.org/10.1134/S0026893317050181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317050181

Keywords

Navigation