Skip to main content
Log in

Inhibition of invasive properties of murine melanoma by bovine pancreatic DNase I in vitro and in vivo

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

After a long pause, the accumulation of data on the involvement of tumor-specific DNA and extracellular DNA in metastasis has again placed enzymes with deoxyribonuclease activity in the focus of the search for antitumor and antimetastatic drugs. In this work, the ability of bovine pancreatic DNase I to reduce the invasive potential of B16 melanoma has been investigated in vitro and in vivo. It was found that DNase I had a cytotoxic effect on B16 melanoma cells (IC50 ≈ 104 U/mL). At the same time, significantly lower doses of DNase I (102–103 U/mL) inhibited the migratory activity of melanoma cells in vitro, causing a decrease in the distance of cell front migration and in the area of scratch healing 48 h after the enzyme addition, as well as reducing the rate of cell migration. In mice with B16 metastatic melanoma, intramuscular administration of DNase I in the dose range of 0.12–1.20 mg/kg resulted in a two-to threefold decrease in the number of surface lung metastases and caused nonspecific antigenic immune stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NET:

neutrophil extracellular trap

exDNA:

extracellular DNA

CMI:

cortex–medulla index

References

  1. Bhattarai D., Singh S., Jang Y., Hyeon Han S., Lee K., Choi Y. 2016. An insight into drug repositioning for the development of novel anti-cancer drugs. Curr. Top. Med. Chem. 16, 2156–2168.

    Article  CAS  PubMed  Google Scholar 

  2. Shimizu S. 2015. Development of anti-cancer drugs mediated by apoptosis and autophagy. Nihon Rinsho. 73, 1302–1307.

    PubMed  Google Scholar 

  3. Hanusova V., Skalova L., Kralova V., Matouskova P. 2015. Potential anti-cancer drugs commonly used for other indications. Curr. Cancer Drug Targets. 15, 35–52.

    Article  CAS  PubMed  Google Scholar 

  4. Munoz M., Covenas R., Esteban F., Redondo M. 2015. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J. Biosci. 40, 441–463.

    Article  CAS  PubMed  Google Scholar 

  5. Harisa G.I., Alanazi F.K. 2014. Low density lipoprotein bionanoparticles: From cholesterol transport to delivery of anti-cancer drugs. Saudi Pharm. J. 22, 504–515.

    Article  PubMed  Google Scholar 

  6. Haakensen V.D., Nygaard V., Greger L., Aure M.R., Fromm B., Bukholm I.R., Lüders T., Chin S., Git A., Caldas C., Kristensen V.N., Brazma A., Børresen-Dale A.L., Hovig E., Helland Å. 2016. Subtype-specific micro-RNA expression signatures in breast cancer progression. Int. J. Cancer. 139, 1117–1128.

    Article  CAS  PubMed  Google Scholar 

  7. Montani F., Bianchi F. 2016. Circulating cancer biomarkers: The macro-revolution of the micro-RNA. EBioMedicine. 5, 4–6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang P., Zhu C.F., Ma M.Z., Chen G., Song M., Zeng Z.L., Lu W.H., Yang J., Wen S., Chiao P.J., Hu Y., Huang P. 2015. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget. 25, 21148–21158.

    Article  Google Scholar 

  9. Medimegh I., Troudi W., Stambouli N., Khodjet-El-Khil H., Baroudi O., Ayari H., Omrane I., Uhrhammer N., Privat M., Mezlini A., Ayed F.B., Romdhane K.B., Mader S., Bignon Y.J., Elgaaied A.B. 2014. Wild-type genotypes of BRCA1 gene SNPs combined with micro-RNA over-expression in mammary tissue leading to familial breast cancer with an increased risk of distant metastases’ occurrence. Med. Oncol. 31, 255.

    Article  PubMed  Google Scholar 

  10. Vietsch E.E., Van Eijck C.H., Wellstein A. 2015. Circulating DNA and micro-RNA in patients with pancreatic cancer. Pancreat. Disord. Ther. 5, 156.

    PubMed  PubMed Central  Google Scholar 

  11. El Messaoudi S., Mouliere F., Du Manoir S., Bascoul-Mollevi C., Gillet B., Nouaille M., Fiess C., Crapez E., Bibeau F., Theillet C., Mazard T., Pezet D., Mathonnet M., Ychou M., Thierry A.R. 2016. Circulating DNA as a strong multimarker prognostic tool for metastatic colorectal cancer patient management care. Clin. Cancer Res. 22, 3067–3077.

    Article  CAS  PubMed  Google Scholar 

  12. Thierry A.R. 2016. A targeted Q-PCR-based method for point mutation testing by analyzing circulating DNA for cancer management care. Methods Mol. Biol. 1392, 1–16.

    Article  PubMed  Google Scholar 

  13. Jackson J.B., Choi D.S., Luketich J.D., Pennathur A., Stå hlberg A., Godfrey T.E. 2016. Multiplex preamplification of serum DNA to facilitate reliable detection of extremely rare cancer mutations in circulating DNA by digital PCR. J. Mol. Diagn. 18, 235–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trejo-Becerril C., Pérez-Cardenas E., Gutiérrez-Díaz B., De La Cruz-Sigüenza D., Taja-Chayeb L., González-Ballesteros M., García-López P., Chanona J., Dueñas-González A. 2016. Antitumor effects of s DNAse I and proteases in an in vivo model. Integr. Cancer Ther. 4, 1–9.

    Google Scholar 

  15. Alcázar-Leyva S., Cerón E., Masso F., Montaño L.F., Gorocica P., Alvarado-Vásquez N. 2009. Incubation with DNase I inhibits tumor cell proliferation. Med. Sci. Monit. 15, 51–55.

    Google Scholar 

  16. Shklyaeva O.A., Mironova N.L., Malkova E.M., Taranov O.S., Ryabchikova E.I., Zenkova M.A., Vlasov V.V. 2008. Cancer-suppressive effect of RNase A and DNase I. Dokl. Biochem. Biophys. 420, 108–111.

    Article  CAS  PubMed  Google Scholar 

  17. Patutina O., Mironova N., Ryabchikova E., Popova N., Nikolin V., Kaledin V., Vlassov V., Zenkova M. 2011. Inhibition of metastasis development by daily administration of ultralow doses of RNase A and DNase I. Biochimie. 93, 689–696.

    Article  CAS  PubMed  Google Scholar 

  18. Patutina O.A., Mironova N.L. Ryabchikova E.I. Popova N.A. Nikolin V.P. Kaledin V.I. Vlassov V.V. Zenkova M.A. 2010. Tumoricidal activity of RNase A and DNase I. Acta Naturae. 2, 88–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi J.H., Jang J.Y., Joung Y.K., Kwon M.H., Park K.D. 2010. Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. J. Control. Release. 147, 420–427.

    Article  CAS  PubMed  Google Scholar 

  20. Sevcik J., Urbanikova L., Leland P.A., Raines R.T. 2002. X-ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity. J. Biol. Chem. 277, 47325–47330.

    Article  CAS  PubMed  Google Scholar 

  21. Sen’kova A.V., Mironova N.L., Patutina O.A., Mitkevich V.A., Markov O.V., Petrushanko I.Y., Burnysheva K.M., Zenkova M.A., Makarov A.A. 2014. Ribonuclease binase decreases destructive changes of the liver and restores its regeneration potential in mouse lung carcinoma model. Biochimie. 101, 256–259.

    Article  PubMed  Google Scholar 

  22. Ilinskaya O., Decker K., Koschinski A., Dreyer F., Repp H. 2001. Bacillus intermedius ribonuclease as inhibitor of cell proliferation and membrane current. Toxicology. 156, 101–107.

    Article  CAS  PubMed  Google Scholar 

  23. Mironova N.L., Petrushanko I.Y., Patutina O.A., Sen’kova A.V., Simonenko O.V., Mitkevich V.A., Markov O.V., Zenkova M.A., Makarov A.A. 2013. Ribonuclease binase inhibits primary tumor growth and metastases via apoptosis induction in tumor cells. Cell Cycle. 12, 2120–2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitkevich V.A., Petrushanko I.Y., Spirin P.V., Fedorova T.V., Kretova O.V., Tchurikov N.A., Prassolov V.S., Ilinskaya O.N., Makarov A.A. 2011. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and AML1-ETO oncogenes. Cell Cycle. 10, 4090–4097.

    Article  CAS  PubMed  Google Scholar 

  25. Fang E.F., Zhang C.Z., Fong W.P., Ng T.B. 2012. RNase MC2: A new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways. Apoptosis. 17, 377–387.

    Article  CAS  PubMed  Google Scholar 

  26. Kurinenko B.M., Sobchak L.I., Kaibullina S.A., Bulgakova R.Sh. 1988. Experimental analysis of antitumor ectovoty of Bac. intermedius RNase. Eksp. Onkol. 10, 54–57.

    CAS  PubMed  Google Scholar 

  27. Lee J.E., Raines R.T. 2008. Ribonucleases as novel chemotherapeutics: The ranpirnase example. BioDrugs. 22, 53–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee I., Lee Y.H., Mikulski S.M., Lee J., Covone K., Shogen K. 2000. Tumoricidal effects of onconase on various tumors. J. Surg. Oncol. 73, 164–171.

    Article  CAS  PubMed  Google Scholar 

  29. Costanzi J., Sidransky D., Navon A., Goldsweig H. 2005. Ribonucleases as a novel pro-apoptotic anticancer strategy: Review of the preclinical and clinical data for ranpirnase. Cancer Invest. 23, 643–650.

    Article  CAS  PubMed  Google Scholar 

  30. Lu C.X., Nan K.J., Lei Y. 2008. Agents from amphibians with anticancer properties. Anticancer Drugs. 19, 931–939.

    Article  CAS  PubMed  Google Scholar 

  31. Lee J.E., Raines R.T. 2005. Cytotoxicity of bovine seminal ribonuclease: Monomer versus dimer. Biochemistry. 44, 15760–15767.

    Article  CAS  PubMed  Google Scholar 

  32. Mironova N., Patutina O., Brenner E., Kurilshikov A., Vlassov V., Zenkova M. 2013. MicroRNA drop in the bloodstream and microRNA boost in the tumour caused by treatment with ribonuclease A leads to an attenuation of tumour malignancy. PLoS ONE. 12, e83482.

    Article  Google Scholar 

  33. Hawes M.C., Wen F., Elquza E. 2015. Extracellular DNA: A bridge to cancer. Cancer Res. 75, 4260–4264.

    Article  CAS  PubMed  Google Scholar 

  34. Cools-Lartigue J., Spicer J., McDonald B., Gowing S., Chow S., Giannias B., Bourdeau F., Kubes P., Ferri L. 2013. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 1, 67484.

    Google Scholar 

  35. Salganik R.I., Martynova R.P., Matienko N.A. 1967. Effect of deoxyribonuclease on the course of lymphatic leukaemia in AKR mice. Nature. 214, 100–102.

    Article  CAS  PubMed  Google Scholar 

  36. Sugihara S., Yamamoto T., Tanaka H., Kambara T., Hiraoka T., Miyauchi Y. 1993. Deoxyribonuclease treatment prevents blood-borne liver metastasis of cutaneously transplanted tumour cells in mice. Br. J. Cancer. 67, 66–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sugihara S., Yamamoto T., Tsuruta J., Tanaka J., Kambara T., Hiraoka T., Miyauchi Y. 1990. Serine proteaseinduced enhancement of blood-borne metastasis of rat ascites tumour cells and its prevention with deoxyribonuclease. Br. J. Cancer. 62, 607–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen F., Shen A., Choi A., Gerner E.W., Shi J. 2013. Extracellular DNA in pancreatic cancer promotes cell invasion and metastasis. Cancer Res. 73, 4256–4266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A service of the US National Institutes of Health, ClinicalTrials.gov (2012). Evaluation of the Safety and Efficacy of Oshadi D and Oshadi R for Cancer Treatment. ClinicalTrials.gov, Identifier:NCT01201018. https://clinicaltrials.gov/ct2/show/NCT01201018.

  40. Rosner K. 2011. DNase1: A new personalized therapy for cancer? Expert Rev. Anticancer Ther. 11, 981–984.

    Article  Google Scholar 

  41. Park J.G., Kramer B.S. Steinberg S.M., Carmichael J., Collins J.M., Minna J.D., Gazdar A.F. 1987. Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer Res. 22, 5875–5879.

    Google Scholar 

  42. Liang C.C., Park A.Y., Guan J.L. 2007. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333.

    Article  CAS  PubMed  Google Scholar 

  43. Cesta M.F. 2006. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34, 455–465.

    Article  PubMed  Google Scholar 

  44. Jiménez-Alcázar M., Napirei M., Panda R., Köhler E.C., Kremer Hovinga J.A., Mannherz H.G., Peine S., Renné T., Lämmle B., Fuchs T.A. 2015. Impaired DNase1-mediated degradation of neutrophil extracellular traps is associated with acute thrombotic microangiopathies. J. Thromb. Haemost. 5, 732–742.

    Article  Google Scholar 

  45. Spicer J.D., McDonald B., Cools-Lartigue J.J., Chow S.C., Giannias B., Kubes P., Ferri L.E. 2012. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 72, 3919–3927.

    Article  CAS  PubMed  Google Scholar 

  46. Mangold A., Alias S., Scherz T., Hofbauer T., Jakowitsch J., Panzenböck A., Simon D., Laimer D., Bangert C., Kammerlander A., Mascherbauer J., Winter M.P., Distelmaier K., Adlbrecht C., Preissner K., Lang I.M. 2015. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 116, 1182–1192.

    Article  CAS  PubMed  Google Scholar 

  47. Demers M., Krause D.S., Schatzberg D., Martinod K., Voorhees J.R., Fuchs T.A., Scadden D.T., Wagner D.D. 2012. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl. Acad. Sci. U. S. A. 109, 13076–13081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Demers M., Wagner D.D. 2013. NETs: a new link to cancer-associated thrombosis and potential implications for tumor progression. OncoImmunol. 2, 322946.

    Article  Google Scholar 

  49. Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. 2014. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458.

    Article  Google Scholar 

  50. García-Olmo D.C., Domínguez C., García-Arranz M., Anker P., Stroun M., García-Verdugo J.M., García-Olmo D. 2010. Cell-Free nucleic acids circulating in the plasma of colorectal cancer patients induce the oncogenic transformation of susceptible cultured cells. Cancer Res. 70, 560–567.

    Article  PubMed  Google Scholar 

  51. Trejo-Becerril C., Pérez-Cárdenas E., Taja-Chayeb L., Anker P., Herrera-Goepfert R., Medina-Velázquez L.A., Hidalgo-Miranda A., Pérez-Montiel D., Chávez-Blanco A., Cruz-Velázquez J., Díaz-Chávez J., Gaxiola M., Dueñas-González A. 2012. Cancer progression mediated by horizontal gene transfer in an in vivo model. PLoS ONE. 12, e52754.

    Article  Google Scholar 

  52. Markov O.V., Mironova N.L., Sennikov S.V., Vlassov V.V., Zenkova M.A. 2015. Prophylactic dendritic cell-based vaccines efficiently inhibit metastases in murine metastatic melanoma. PLoS ONE. 10, e0136911.

    Article  Google Scholar 

  53. Markov O.V., Mironova N.L., Shmendel E.V., Serikov R.N., Morozova N.G., Maslov M.A., Vlassov V.V., Zenkova M.A. 2015. Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive antitumour response in murine melanoma model. J. Control. Release. 213, 45–56.

    Article  CAS  PubMed  Google Scholar 

  54. Kabilova T.O., Sen’kova A.V., Nikolin V.P., Popova N.A., Zenkova M.A., Vlassov V.V., Chernolovskaya E.L. 2016. Antitumor and antimetastatic effect of small immunostimulatory RNA against B16 melanoma in mice. PLoS ONE. 11, e0150751. doi 10.1371/journal.pone.0150751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Mironova.

Additional information

Original Russian Text © L.A. Alexeeva, O.A. Patutina, A.V. Sen’kova, M.A. Zenkova, N.L. Mironova, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 4, pp. 637–646.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeeva, L.A., Patutina, O.A., Sen’kova, A.V. et al. Inhibition of invasive properties of murine melanoma by bovine pancreatic DNase I in vitro and in vivo. Mol Biol 51, 562–570 (2017). https://doi.org/10.1134/S0026893317040021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317040021

Keywords

Navigation