Skip to main content
Log in

Systemic delivery of complexes of melanoma RNA with mannosylated liposomes activates highly efficient murine melanoma-specific cytotoxic T cells in vivo

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The efficiency of the antitumor immune response triggered by dendritic cell (DC)-based vaccines depends predominantly on the efficiency of delivering tumor antigen-coding nucleic acids into DCs. Mannosylated liposomes were used to deliver tumor total RNA into DCs both ex vivo and in vivo, and the cytotoxic T-lymphocyte (CTL) antitumor response was assayed. The liposomes contained the mannosylated lipid conjugate 3-[6-(α-D-mannopyranosyloxy)hexyl]amino-4-{6-[rac-2,3-di(tetradecyloxy)prop-1-yl oxycarbonylamino]hexyl}aminocyclobut-3-en-1,2-dione), the polycationic lipid 2X3 (1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), and the zwitterionic lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) at a molar ratio of 1: 3: 6 and were used as a transfection agent. Total RNA isolated from B16-F10 mouse melanoma cells served as a source of tumor antigens. Systemic administration of mannosylated liposomes–tumor RNA complexes into circulation of melanoma- bearing mice induced an efficient CTL response, which reduced the melanoma cell index in vitro with the same efficiency (by a factor of 2.8) as CTLs activated via an inoculation of DCs loaded with complexes of the same composition ex vivo. Complexes of tumor RNA with control liposomes, which lacked the mannosylated lipid conjugate, or DCs transfected with these complexes ex vivo were less efficient and reduced the melanoma cell count by a factor of only 1.6–1.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DC:

dendritic cell

MMC:

mitomycin C

CTL:

cytotoxic T lymphocyte

References

  1. Palucka K., Banchereau J. 2013. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 39, 38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zarnani A.H., Torabi-Rahvar M., Bozorgmehr M., Zareie M., Mojtabavi N. 2015. Improved efficacy of a dendritic cell-based vaccine against a murine model of colon cancer: The helper protein effect. Cancer Res. Treat. 47, 518–526.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng X., Koropatnick J., Chen D., Velenosi T., Ling H., Zhang X., Jiang N., Navarro B., Ichim T.E., Urquhart B., Min W. 2013. Silencing IDO in dendritic cells: A novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int. J. Cancer. 132, 967–977.

    Article  CAS  PubMed  Google Scholar 

  4. Suehiro Y., Hasegawa A., Iino T., Sasada A., Watanabe N., Matsuoka M., Takamori A., Tanosaki R., Utsunomiya A., Choi I., Fukuda T., Miura O., Takaishi S., Teshima T., Akashi K. et al. 2015. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study. Br. J. Haematol. 169, 356–367.

    Article  CAS  PubMed  Google Scholar 

  5. Wilgenhof S., Corthals J., Van Nuffel A.M., Benteyn D., Heirman C., Bonehill A., Thielemans K., Neyns B. 2015. Long-term clinical outcome of melanoma patients treated with messenger RNA-electroporated dendritic cell therapy following complete resection of metastases. Cancer Immunol. Immunother. 64, 381–388.

    Article  CAS  PubMed  Google Scholar 

  6. Cafri G., Sharbi-Yunger A., Tzehoval E., Alteber Z., Gross T., Vadai E., Margalit A., Gross G., Eisenbach L. 2015. mRNA-transfected dendritic cells expressing polypeptides that link MHC-I presentation to constitutive TLR4 activation confer tumor immunity. Mol. Ther. 23, 1391–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie J., Xiong L., Tao X., Li X., Su Y., Hou X., Shi H. 2010. Antitumor effects of murine bone marrowderived dendritic cells infected with xenogeneic livin alpha recombinant adenoviral vectors against Lewis lung carcinoma. Lung Cancer. 68, 338–345.

    Article  PubMed  Google Scholar 

  8. Xiao L., Joo K.I., Lim M., Wang P. 2012. Dendritic cell-directed vaccination with a lentivector encoding PSCA for prostate cancer in mice. PLoS ONE. 7, e48866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perche F., Benvegnu T., Berchel M., Lebegue L., Pichon C., Jaffrès P.A., Midoux P. 2011. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine. 7, 445–453.

    CAS  PubMed  Google Scholar 

  10. Yuba E., Kanda Y., Yoshizaki Y., Teranishi R., Harada A., Sugiura K., Izawa T., Yamate J., Sakaguchi N., Koiwai K., Kono K. 2015. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon gene lipoplex for efficient cancer immunotherapy. Biomaterials. 67, 214–224.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y.Z. Yao X.L., Tabata Y., Nakagawa S., Gao J.Q. 2010. Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin. Dev. Immunol. 2010, 565643.

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Haes W., Rejman J., Pollard C., Merlin C., Vekemans M., Florence E., De Smedt S.C., Grooten J., Vanham G., De Koker S., Van Gulck E. 2013. Lipoplexes carrying mRNA encoding Gag protein modulate dendritic cells to stimulate HIV-specific immune responses. Nanomedicine (London). 8, 77–87.

    Article  Google Scholar 

  13. Markov O.V., Mironova N.L., Sennikov S.V., Vlassov V.V., Zenkova M.A. 2015. Prophylactic dendritic cell-based vaccines efficiently inhibit metastases in murine metastatic melanoma. PLoS ONE. 10, e0136911.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martinez-Pomares L. 2012. The mannose receptor. J. Leukoc. Biol. 92, 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  15. Carrillo-Conde B., Song E.H., Chavez-Santoscoy A., Phanse Y., Ramer-Tait A.E., Pohl N.L., Wannemuehler M.J., Bellaire B.H., Narasimhan B. 2011. Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol. Pharm. 8, 1877–1886.

    Article  CAS  PubMed  Google Scholar 

  16. Tang C.K., Lodding J., Minigo G., Pouniotis D.S., Plebanski M., Scholzen A., McKenzie I.F., Pietersz G.A., Apostolopoulos V. 2007. Mannan-mediated gene delivery for cancer immunotherapy. Immunology. 120, 325–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Markov O., Mironova N.L., Maslov M.A., Petukhov I.A., Morozova N.G., Vlassov V.V., Zenkova M.A. 2012. Novel cationic liposomes provide highly efficient delivery of DNA and RNA into dendritic cell progenitors and their immature offsets. J. Control. Release. 160, 200–210.

    Article  CAS  PubMed  Google Scholar 

  18. Markov O.V., Mironova N.L., Shmendel E.V., Serikov R.N., Morozova N.G., Maslov M.A., Vlassov V.V., Zenkova M.A. 2015. Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive anti-tumour response in murine melanoma model. J. Control. Release. 213, 45–56.

    Article  CAS  PubMed  Google Scholar 

  19. Petukhov I.A., Maslov M.A., Morozova N.G., Serebrennikova G.A. 2010. Synthesis of cholesterol-containing polycationic lipids. Izv. Ross. Akad. Nauk, Ser. Khim. 1, 254–261.

    Google Scholar 

  20. Shmendel’ E.V., Timakova A.A., Maslov M.A., Morozova N.G., Chupin V.V. 2012. Synthesis of a mannosylcontaining neoglycolipid conjugate as a component of systems for targeted delivery of nucleic acids to antigenpresenting cells. Izv. Ross. Akad. Nauk, Ser. Khim. 7, 1480–1484.

    Google Scholar 

  21. Wu Y.G., Wu G.Z., Wang L., Zhang Y.Y., Li Z., Li D.C. 2010. Tumor cell lysate-pulsed dendritic cells induce a T cell response against colon cancer in vitro and in vivo. Med. Oncol. 27, 736–742.

    Article  CAS  PubMed  Google Scholar 

  22. Kim B.R., Yang E.K., Kim D.Y., Kim S.H., Moon D.C., Lee J.H., Kim H.J., Lee J.C. 2012. Generation of anti-tumour immune response using dendritic cells pulsed with carbonic anhydrase IX-Acinetobacter baumannii outer membrane protein A fusion proteins against renal cell carcinoma. Clin. Exp. Immunol. 167, 73–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiu L., Li J., Yu S., Wang Q., Li Y., Hu Z., Wu Q., Guo Z., Zhang J. 2015. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells. Oncotarget. 6, 5195–5203.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salem M.L. 2014. The use of dendritic cells for peptidebased vaccination in cancer immunotherapy. Methods Mol. Biol. 1139, 479–503.

    Article  CAS  PubMed  Google Scholar 

  25. Vacchelli E., Vitale I., Eggermont A., Fridman W.H., Fucíková J., Cremer I., Galon J., Tartour E., Zitvogel L., Kroemer G., Galluzzi L. 2013. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2, e25771.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu Y., Kawakami S., Yamashita F., Hashida M. 2007. Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials. 28, 3255–3262.

    Article  CAS  PubMed  Google Scholar 

  27. Lonez C., Vandenbranden M., Ruysschaert J.M. 2012. Cationic lipids activate intracellular signaling pathways. Adv. Drug Deliv. Rev. 64, 1749–1758.

    Article  CAS  PubMed  Google Scholar 

  28. Hattori Y., Kawakami S., Lu Y., Nakamura K., Yamashita F., Hashida M. 2006. Enhanced DNA vaccine potency by mannosylated lipoplex after intraperitoneal administration. J. Gene Med. 8, 824–834.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Markov.

Additional information

Original Russian Text © O.V. Markov, N.L. Mironova, E.V. Shmendel, M.A. Maslov, M.A. Zenkova, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 1, pp. 118–125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, O.V., Mironova, N.L., Shmendel, E.V. et al. Systemic delivery of complexes of melanoma RNA with mannosylated liposomes activates highly efficient murine melanoma-specific cytotoxic T cells in vivo. Mol Biol 51, 102–107 (2017). https://doi.org/10.1134/S0026893317010137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317010137

Keywords

Navigation