Skip to main content
Log in

The biological function of SHP2 in human disease

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Tyrosyl phosphorylation participates in various pathological and physiological processes, which are regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). The Src homology- 2 domain containing phosphatase SHP2 (encoded by PTPN11) is an important phosphatase, which was found to be implicated in the regulation of genetic disease, development, metabolic, neurological, muscle, skeletal disease and cancer. Germline mutations in PTPN11 cause the Noonan Syndrome, LEOPARD syndrome and metachondromatosis. Somatic PTPN11 mutations occur in hematologic malignancies and in solid tumors. SHP2 is also an important component in oncogenic signaling pathways. It may play different roles in different stages and positions of human cancers. Whether SHP2 is an oncogene or cancer suppressor gene remains to be elucidated. Elucidation of the regulatory mechanisms of SHP2 in human disease will provide new insights into disease and new targets for therapy. Here, we summarized the structural basis and recent research progression on SHP2 in various human disease, including genetic and cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dechert U., Duncan A.M., Bastien L., Duff C., Adam M., Jirik F.R. 1995. Protein-tyrosine phosphatase SHPTP2 (PTPN11) is localized to 12q24.1-24.3. Hum. Genet. 96, 609–615.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad S., Banville D., Zhao Z., Fischer E.H., Shen S.H. 1993. A widely expressed human protein-tyrosine phosphatase containing src homology 2 domains. Proc. Natl. Acad. Sci. U. S. A. 90, 2197–2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adachi M., Sekiya M., Miyachi T., Matsuno K., Hinoda Y., Imai K., Yachi A. 1992. Molecular cloning of a novel protein-tyrosine phosphatase SH-PTP3 with sequence similarity to the src-homology region 2. FEBS Lett. 314, 335–339.

    Article  CAS  PubMed  Google Scholar 

  4. Freeman R.J., Plutzky J., Neel B.G. 1992. Identification of a human src homology 2-containing proteintyrosine- phosphatase: A putative homolog of Drosophila corkscrew. Proc. Natl. Acad. Sci. U. S. A. 89, 11239–11243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Isobe M., Hinoda Y., Imai K., Adachi M. 1994. Chromosomal localization of an SH2 containing tyrosine phosphatase (SH-PTP3) gene to chromosome 12q24.1. Oncogene. 9, 1751–1753.

    CAS  PubMed  Google Scholar 

  6. Hof P., Pluskey S., Dhe-Paganon S., Eck M.J., Shoelson S.E. 1998. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 92, 441–450.

    Article  CAS  PubMed  Google Scholar 

  7. Saxton T.M., Henkemeyer M., Gasca S., Shen R., Rossi D.J., Shalaby F., Feng G.S., Pawson T. 1997. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 16, 2352–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu D., Pang Y., Ke Y., Yu J., He Z., Tautz L., Mustelin T., Ding S., Huang Z., Feng G.S. 2009. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. PLoS ONE. 4, e4914.

    Article  Google Scholar 

  9. Yang W., Klaman L.D., Chen B., Araki T., Harada H., Thomas S.M., George E.L., Neel B.G. 2006. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev. Cell. 10, 317–327.

    Article  CAS  PubMed  Google Scholar 

  10. Qu C.K., Yu W.M., Azzarelli B., Cooper S., Broxmeyer H.E., Feng G.S. 1998. Biased suppression of hematopoiesis and multiple developmental defects in chimeric mice containing Shp-2 mutant cells. Mol. Cell Biol. 18, 6075–6082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saxton T.M., Ciruna B.G., Holmyard D., Kulkarni S., Harpal K., Rossant J., Pawson T. 2000. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nat. Genet. 24, 420–423.

    Article  CAS  PubMed  Google Scholar 

  12. Bowen M.E., Ayturk U.M., Kurek K.C., Yang W., Warman M.L. 2014. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates. PLoS Genet. 10, e1004364.

    Article  Google Scholar 

  13. Zhou Y., Mohan A., Moore D.C., Lin L., Zhou F.L., Cao J., Wu Q., Qin Y.X., Reginato A.M., Ehrlich M.G., Yang W. 2015. SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion. FASEB J. 29(5), 1635–1645. doi 10.1096/fj.14-260844

    Article  CAS  PubMed  Google Scholar 

  14. Qu C.K., Yu W.M., Azzarelli B., Feng G.S. 1999. Genetic evidence that Shp-2 tyrosine phosphatase is a signal enhancer of the epidermal growth factor receptor in mammals. Proc. Natl. Acad. Sci. U. S. A. 96, 8528–8533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tajan M., Batut A., Cadoudal T., Deleruyelle S., Le Gonidec S., Saint L.C., Vomscheid M., Wanecq E., Treguer K., De Rocca S.A., Vinel C., Marques M.A., Pozzo J., Kunduzova O., Salles J.P., et al. 2014. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 111, e4494–E4503.

    Article  Google Scholar 

  16. Maegawa H., Hasegawa M., Sugai S. Obata T., Ugi S., Morino K., Egawa K., Fujita T., Sakamoto T., Nishio Y., Kojima H., Haneda M., Yasuda H., Kikkawa R., Kashiwagi A. 1999. Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J. Biol. Chem. 274, 30236–30243.

    Article  CAS  PubMed  Google Scholar 

  17. Qu C.K., Shi Z.Q., Shen R., Tsai F.Y., Orkin S.H., Feng G.S. 1997. A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. Mol. Cell Biol. 17, 5499–5507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L., Chen W., Mysliwski M., Serio J., Ropa J., Abulwerdi F.A., Chan R.J., Patel J.P., Tallman M.S., Paietta E., Melnick A., Levine R.L., Abdel-Wahab O., Nikolovska-Coleska Z., Muntean A.G. 2015. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition. Leukemia. 29 (6), 1290–1300. doi 10.1038/leu.2015.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Inagaki K., Noguchi T., Matozaki T., Horikawa T., Fukunaga K., Tsuda M., Ichihashi M., Kasuga M. 2000. Roles for the protein tyrosine phosphatase SHP-2 in cytoskeletal organization, cell adhesion and cell migration revealed by overexpression of a dominant negative mutant. Oncogene. 19, 75–84.

    Article  CAS  PubMed  Google Scholar 

  20. Yu D.H., Qu C.K., Henegariu O., Lu X., Feng G.S. 1998. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem. 273, 21125–21131.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y., Chen C., Wang D.W. 2014. Leopard syndrome caused by heterozygous missense mutation of Tyr 279 Cys in the PTPN11 gene in a sporadic case of Chinese Han. Int. J. Cardiol. 174, e101–e104.

    Article  Google Scholar 

  22. Tartaglia M., Martinelli S., Cazzaniga G., Cordeddu V., Iavarone I., Spinelli M., Palmi C., Carta C., Pession A., Arico M., Masera G., Basso G., Sorcini M., Gelb B.D., Biondi A. 2004. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood. 104, 307–313.

    Article  CAS  PubMed  Google Scholar 

  23. Neel B.G., Tonks N.K. 1997. Protein tyrosine phosphatases in signal transduction. Curr. Opin. Cell Biol. 9, 193–204.

    Article  CAS  PubMed  Google Scholar 

  24. Huyer G., Alexander D.R. 1999. Immune signalling: SHP-2 docks at multiple ports. Curr. Biol. 9, R129–R132.

    Article  CAS  PubMed  Google Scholar 

  25. Qu C.K. 2000. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Res. 10, 279–288.

    Article  CAS  PubMed  Google Scholar 

  26. Matozaki T., Murata Y., Saito Y., Okazawa H., Ohnishi H. 2009. Protein tyrosine phosphatase SHP-2: A protooncogene product that promotes Ras activation. Cancer Sci. 100, 1786–1793.

    Article  CAS  PubMed  Google Scholar 

  27. Agazie Y.M., Hayman M.J. 2003. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell Biol. 23, 7875–7886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montagner A., Yart A., Dance M., Perret B., Salles J.P., Raynal P. 2005. A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J. Biol. Chem. 280, 5350–5360.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang S.Q., Yang W., Kontaridis M.I., Bivona T.G., Wen G., Araki T., Luo J., Thompson J.A., Schraven B.L., Philips M.R., Neel B.G. 2004. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell. 13, 341–355.

    Article  PubMed  Google Scholar 

  30. Hanafusa H., Torii S., Yasunaga T., Nishida E. 2002. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat. Cell. Biol. 4, 850–858.

    Article  CAS  PubMed  Google Scholar 

  31. Araki T., Nawa H., Neel B.G. 2003. Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J. Biol. Chem. 278, 41677–41684.

    Article  CAS  PubMed  Google Scholar 

  32. Poole A.W., Jones M.L. 2005. A SHPing tale: Perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal. 17, 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  33. Barford D., Neel B.G. 1998. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure. 6, 249–254.

    Article  CAS  PubMed  Google Scholar 

  34. Lauriol J., Kontaridis M.I. 2011. PTPN11-associated mutations in the heart: Has LEOPARD changed Its RASpots? Trends Cardiovasc. Med. 21, 97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang S.Q., Tsiaras W.G., Araki T., Wen G., Minichiello L., Klein R., Neel B.G. 2002. Receptor-specific regulation of phosphatidylinositol 3’-kinase activation by the protein tyrosine phosphatase Shp2. Mol. Cell Biol. 22, 4062–4072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mattoon D.R., Lamothe B., Lax I., Schlessinger J. 2004. The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol. 2, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tartaglia M., Niemeyer C.M., Shannon K.M., Loh M.L. 2004. SHP-2 and myeloid malignancies. Curr. Opin. Hematol. 11, 44–50.

    Article  CAS  PubMed  Google Scholar 

  38. You M., Yu D.H., Feng G.S. 1999. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell Biol. 19, 2416–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindsey S., Huang W., Wang H., Horvath E., Zhu C., Eklund E.A. 2007. Activation of SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). J. Biol. Chem. 282, 2237–2249.

    Article  CAS  PubMed  Google Scholar 

  40. Tartaglia M., Gelb B.D. 2005. Noonan syndrome and related disorders: genetics and pathogenesis. Annu. Rev. Genomics Hum. Genet. 6, 45–68.

    Article  CAS  PubMed  Google Scholar 

  41. Noonan J.A. 1968. Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am. J. Dis. Child. 116, 373–380.

    CAS  PubMed  Google Scholar 

  42. Nora J.J., Nora A.H., Sinha A.K., Spangler R.D., Lubs H.A. 1974. The Ullrich–Noonan syndrome (Turner phenotype). Am. J. Dis. Child. 127, 48–55.

    CAS  PubMed  Google Scholar 

  43. Gulec E.Y., Ocak Z., Candan S., Ataman E., Yarar C. 2015. Novel mutations in PTPN11 gene in two girls with Noonan syndrome phenotype. Int. J. Cardiol. 186, 13–15.

    Article  PubMed  Google Scholar 

  44. Araki T., Mohi M.G., Ismat F.A., Bronson R.T., Williams I.R., Kutok J.L., Yang W., Pao L.I., Gilliland D.G., Epstein J.A., Neel B.G. 2004. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat. Med. 10, 849–857.

    Article  CAS  PubMed  Google Scholar 

  45. Keilhack H., David F.S., McGregor M., Cantley L.C., Neel B.G. 2005. Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J. Biol. Chem. 280, 30984–30993.

    CAS  PubMed  Google Scholar 

  46. Edwards J.J., Martinelli S., Pannone L., Lo I.F., Shi L., Edelmann L., Tartaglia M., Luk H.M., Gelb B.D. 2014. A PTPN11 allele encoding a catalytically impaired SHP2 protein in a patient with a Noonan syndrome phenotype. Am. J. Med. Genet. A. 164A, 2351–2355.

    Article  PubMed  Google Scholar 

  47. Legius E., Schrander-Stumpel C., Schollen E., Pulles- Heintzberger C., Gewillig M., Fryns J.P. 2002. PTPN11 mutations in LEOPARD syndrome. J. Med. Genet. 39, 571–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Digilio M.C., Conti E., Sarkozy A., Mingarelli R., Dottorini T., Marino B., Pizzuti A., Dallapiccola B. 2002. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am. J. Hum. Genet. 71, 389–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kontaridis M.I., Swanson K.D., David F.S., Barford D., Neel B.G. 2006. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J. Biol. Chem. 281, 6785–6792.

    Article  CAS  PubMed  Google Scholar 

  50. Edouard T., Montagner A., Dance M., Conte F., Yart A., Parfait B., Tauber M., Salles J.P., Raynal P. 2007. How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms? Cell Mol. Life Sci. 64, 1585–1590.

    Article  CAS  PubMed  Google Scholar 

  51. Marin T.M., Keith K., Davies B., Conner D.A., Guha P., Kalaitzidis D., Wu X., Lauriol J., Wang B., Bauer M., Bronson R., Franchini K.G., Neel B.G., Kontaridis M.I. 2011. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J. Clin. Invest. 121, 1026–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loh M.L., Vattikuti S., Schubbert S., Reynolds M.G., Carlson E., Lieuw K.H., Cheng J.W., Lee C.M., Stokoe D., Bonifas J.M., Curtiss N.P., Gotlib J., Meshinchi S., Le Beau M.M., Emanuel P.D., Shannon K.M. 2004. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 103, 2325–2331.

    Article  CAS  PubMed  Google Scholar 

  53. Tartaglia M., Niemeyer C.M., Fragale A., Song X., Buechner J., Jung A., Hahlen K., Hasle H., Licht J.D., Gelb B.D. 2003. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150.

    Article  CAS  PubMed  Google Scholar 

  54. Choong K., Freedman M.H., Chitayat D., Kelly E.N., Taylor G., Zipursky A. 1999. Juvenile myelomonocytic leukemia and Noonan syndrome. J. Pediatr. Hematol. Oncol. 21, 523–527.

    Article  CAS  PubMed  Google Scholar 

  55. Fukuda M., Horibe K., Miyajima Y., Matsumoto K., Nagashima M. 1997. Spontaneous remission of juvenile chronic myelomonocytic leukemia in an infant with Noonan syndrome. J. Pediatr. Hematol. Oncol. 19, 177–179.

    Article  CAS  PubMed  Google Scholar 

  56. Chan R.J., Feng G.S. 2007. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood. 109, 862–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu R., Yu Y., Zheng S., Zhao X., Dong Q., He Z., Liang Y., Lu Q., Fang Y., Gan X., Xu X., Zhang S., Dong Q., Zhang X., Feng G.S. 2005. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood. 106, 3142–3149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohi M.G., Neel B.G. 2007. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev. 17, 23–30.

    Article  CAS  PubMed  Google Scholar 

  59. Tartaglia M., Mehler E.L., Goldberg R., Zampino G., Brunner H.G., Kremer H., van der Burgt I., Crosby A.H., Ion A., Jeffery S., Kalidas K., Patton M.A., Kucherlapati R.S., Gelb B.D. 2001. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468.

    Article  CAS  PubMed  Google Scholar 

  60. Mohi M.G., Williams I.R., Dearolf C.R., Chan G., Kutok J.L., Cohen S., Morgan K., Boulton C., Shigematsu H., Keilhack H., Akashi K., Gilliland D.G., Neel B.G. 2005. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell. 7, 179–191.

    Article  CAS  PubMed  Google Scholar 

  61. Bennett A.M., Tang T.L., Sugimoto S., Walsh C.T., Neel B.G. 1994. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc. Natl. Acad. Sci. U. S. A. 91, 7335–7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martinelli S., Carta C., Flex E., Binni F., Cordisco E.L., Moretti S., Puxeddu E., Tonacchera M., Pinchera A., McDowell H.P., Dominici C., Rosolen A., Di Rocco C., Riccardi R., Celli P., et al. 2006. Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet. Cytogenet. 166, 124–129.

    Article  CAS  PubMed  Google Scholar 

  63. Schneeberger V.E., Luetteke N., Ren Y., Berns H., Chen L., Foroutan P., G. V. Martinez, Haura E.B., Chen J., Coppola D., Wu J. 2014. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice. Carcinogenesis. 35, 1717–1725.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schneeberger V.E., Ren Y., Luetteke N., Huang Q., Chen L., Lawrence H.R., Lawrence N.J., Haura E.B., Koomen J.M., Coppola D., Wu J. 2015. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget. 6, 6191–6202.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wan H.C., Chiang W.F., Huang H.H., Shen Y.Y., Chiang H.C. 2014. Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis. BMC Cancer. 14, 442.

    Article  Google Scholar 

  66. Higashi H., Tsutsumi R., Muto S., Sugiyama T., Azuma T., Asaka M., Hatakeyama M. 2002. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 295, 683–686.

    Article  CAS  PubMed  Google Scholar 

  67. Bentires-Alj M., Gil S.G., Chan R., Wang Z.C., Wang Y., Imanaka N., Harris L.N., Richardson A., Neel B.G., Gu H. 2006. A role for the scaffolding adapter GAB2 in breast cancer. Nat. Med. 12, 114–121.

    Article  CAS  PubMed  Google Scholar 

  68. Bard-Chapeau E.A., Li S., Ding J., Zhang S.S., Zhu H.H., Princen F., Fang D.D., Han T., Bailly-Maitre B., Poli V., Varki N.M., Wang H., Feng G.S. 2011. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell. 19, 629–639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang C., Hu F., Tai Y., Du J., Mao B., Yuan Z., Wang Y., Wei L. 2012. The tumor suppressor role of Src homology phosphotyrosine phosphatase 2 in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 138, 637–646.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao X., Hu S., Wang L., Zhang Q., Zhu X., Zhao H., Wang C., Tao R., Guo S., Wang J., Xu J., He Y., Gao Y. 2014. Functional short tandem repeat polymorphism of PTPN11 and susceptibility to hepatocellular carcinoma in Chinese populations. PLOS ONE. 9, e106841.

    Article  Google Scholar 

  71. Sobreira N.L., Cirulli E.T., Avramopoulos D., Wohler E., Oswald G.L., Stevens E.L., Ge D., Shianna K.V., Smith J.P., Maia J.M., Gumbs C.E., Pevsner J., Thomas G., Valle D., Hoover-Fong J.E., Goldstein D.B. 2010. Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet. 6, e1000991.

    Article  Google Scholar 

  72. Bowen M.E., Boyden E.D., Holm I.A., Campos-Xavier B., Bonafe L., Superti-Furga A., Ikegawa S., Cormier-Daire V., Bovee J.V., Pansuriya T.C., De Sousa S.B., Savarirayan R., Andreucci E., Vikkula M., Garavelli L., et al. 2011. Loss-of-function mutations in PTPN11 cause metachondromatosis, but not Ollier disease or Maffucci syndrome. PLoS Genet. 7, e1002050.

    Article  Google Scholar 

  73. Yang W., Wang J., Moore D.C., Liang H., Dooner M., Wu Q., Terek R., Chen Q., Ehrlich M.G., Quesenberry P.J., Neel B.G. 2013. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature. 499, 491–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim H.K., Feng G.S., Chen D., King P.D., Kamiya N. 2014. Targeted disruption of Shp2 in chondrocytes leads to metachondromatosis with multiple cartilaginous protrusions. J. Bone Miner. Res. 29, 761–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barr A.J. 2010. Protein tyrosine phosphatases as drug targets: Strategies and challenges of inhibitor development. Future Med. Chem. 2, 1563–1576.

    Article  CAS  PubMed  Google Scholar 

  76. Hellmuth K., Grosskopf S., Lum C.T., Wurtele M., Roder N., von Kries J.P., Rosario M., Rademann J., Birchmeier W. 2008. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc. Natl. Acad. Sci. U. S. A. 105, 7275–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Li.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 1, pp. 27–33.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S.M. The biological function of SHP2 in human disease. Mol Biol 50, 22–27 (2016). https://doi.org/10.1134/S0026893316010118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316010118

Keywords

Navigation