Skip to main content
Log in

Glucokinase and glucokinase regulatory proteins as molecular targets for novel antidiabetic drugs

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The impairment of glucose homeostasis leads to hyperglycemia and type-2 diabetes mellitus. Glucokinase (GK), an enzyme that catalyzes the conversion of glucose to glucose-6-phosphate in pancreatic ß-cells, liver hepatocytes, specific hypothalamic neurons, and intestine enterocytes, is a key regulator of glucose homeostasis. In hepatocytes, GK controls the glucose uptake and glycogen synthesis and inhibits the glucose synthesis via the gluconeogenesis pathway. Glucokinase regulatory protein (GKRP) synthesized in hepatocytes acts as an endogenous GK inhibitor. During fasting, GKRP binds GK, inactivates it, and transports it into the cell nucleus, thus isolating it from the hepatocyte carbohydrate metabolism. In the beginning of the 2000s, the research was mainly focused on the development and trials of the small molecule GK activators as potential antidiabetic glucose-lowering drugs. However, the use of such substances increased the risk of hypoglycemia, and clinical studies of most synthetic GK activators are currently discontinued. Allosteric inhibitors of the GK–GKRP interaction are coming as alternative agents increasing the GK activity that can substitute GKA. In this review, we discuss the recent advances and the current state of art in the development of potential antidiabetic drugs targeted to GK as a key regulator of glucose homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization Diabetes Fact Sheet No. 312 (Updated November 2014).

  2. Slingerland A.S. 2006. Monogenic diabetes in children and young adults: challenges for researcher, clinician and patient. Rev. Endocr. Metab. Disord. 7, 171–185.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Vaxillaire M., Froguel P. 2008. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr. Rev. 29, 254–264.

    Article  CAS  PubMed  Google Scholar 

  4. Ellard S., Beards F., Allen L.I., Shepherd M., Ballantyne E., Harvey R., Hattersley A.T. 2000. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia. 43, 250–253.

    Article  CAS  PubMed  Google Scholar 

  5. Osbak K.K., Colclough K., Saint-Martin C., Beer N.L., Bellanné- Chantelot C., Ellard S., Gloyn A.L. 2009. Update on mutations in glucokinase (GCK), which cause maturity onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30, 1512–1526.

    Article  CAS  PubMed  Google Scholar 

  6. Glaser B., Kesavan P., Haymen M., Davis E., Cuesta A., Buchs A., Stanley C.A., Thornton P.S., Permutt M.A., Matschinsky F.M., Herold K.C. 1998. Familial hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med. 338, 226–230.

    Article  CAS  PubMed  Google Scholar 

  7. Sayed S., Langdon D.R., Odili S., Chen P., Buettger C., Schiffman A.B., Suchi M., Taub R., Grimsby J., Matschinsky F.M., Stanley C.A. 2009. Extremes of clinical and enzymatic phenotypes in children with hyperinsulinism due to glucokinase activating mutations. Diabetes. 58, 1419–1427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Christesen H.B., Jacobsen B.B., Odili S., Buettger C., Cuesta-Munoz A., Hansen T., Brusgaard K., Massa O., Magnuson M.A., Shiota C., Matschinsky F.M., Barbetti F. 2002. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes. 51, 1240–1246.

    Article  CAS  PubMed  Google Scholar 

  9. Gloyn A.L., Noordam K., Willemsen M.A., Ellard S., Lam W.W., Campbell I.W., Midgley P., Shiota C., Buettger C., Magnuson M.A., Matschinsky F.M., Hattersley A.T. 2003. Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycaemia mutations. Diabetes. 52, 2433–2440.

    Article  CAS  PubMed  Google Scholar 

  10. Cuesta-Muñoz A.L., Huopio H., Otonkoski T., Gomez-Zumaquero J.M., Näntö-Salonen K., Rahier J., López-Enriquez S., García-Gimeno M.A., Sanz P., Soriguer F.C. 2004. Severe persistent hyperinsulinaemic hypoglycaemia due to a de novo glucokinase mutation. Diabetes. 53, 2164–2168.

    Article  PubMed  Google Scholar 

  11. Christesen H.B., Tribble N.D., Molven A., Siddiqui J., Sandal T., Brusgaard K., Ellard S., Njølstad P.R., Alm J., Brock Jacobsen B., Hussain K., Gloyn A.L. 2008. Activating glucokinase (GCK) mutations as a cause of medically responsive congenital hyperinsulinism: Prevalence in children and characterisation of a novel GCK mutation. Eur. J. Endocrinol. 159, 27–34.

    Article  CAS  PubMed  Google Scholar 

  12. Grimsby J., Sarabu R., Corbett W.L., Haynes N.E., Bizzarro F.T., Coffey J.W., Guertin K.R., Hilliard D.W., Kester R.F., Mahaney P.E., Marcus L., Qi L., Spence C.L., Tengi J., Magnuson M.A., Chu C.A., Dvorozniak M.T., Matschinsky F.M., Grippo J.F. 2003. Allosteric activators of glucokinase: Potential role in diabetes therapy. Science. 301, 370–373.

    Article  CAS  PubMed  Google Scholar 

  13. Sarabu R., Berhtel S.J., Kester R.F., Tilley J.W. 2008. Glucokinase activators as new type 2 diabetes therapeutic agents. Expert Opin. Ther. Pathol. 18, 759–768.

    Article  CAS  Google Scholar 

  14. Sarabu R., Berhtel S.J., Kester R.F., Tilley J.W. 2011. Novel glucokinase activators: A patent review (2008–2010). Expert Opin. Ther. Pathol. 21, 13–33.

    Article  CAS  Google Scholar 

  15. Filipski K.J., Futasugi K., Pfefferkorn J.A., Stevens B.D. 2012. Glucokinase activators. Pharm. Pathol. Anal. 1, 301–311.

    Article  CAS  Google Scholar 

  16. Filipski K.J., Pfefferkorn J.A. 2014. Glucokinase activators and disruptors of the glucokinase–glucokinase regulatory protein interaction: 2011–2014. Expert Opin. Ther. Pathol. 24, 875–891.

    Article  CAS  Google Scholar 

  17. Matschinsky F.M. 2013. GKAs for diabetes therapy: why no clinically useful drug after two decades of trying? Trends Pharmacol. Sci. 34, 90–99.

    Article  CAS  PubMed  Google Scholar 

  18. Hale C., Lloyd D.J., Pellacani A., Veniant M.M. 2015. Molecular targeting of the GK-GKRP pathway in diabetes. Expert Opin. Ther. Targets. 19, 129–139.

    Article  CAS  PubMed  Google Scholar 

  19. Van Schaftingen E. 1989. A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1phosphate. Eur. J. Biochem. 179, 179–184.

    Article  CAS  PubMed  Google Scholar 

  20. Van Schaftingen E., Vandercammen A., Detheux M., Davies D.R. 1992. The regulatory protein of liver glucokinase. Adv. Enzyme Regul. 32, 133–148.

    Article  CAS  PubMed  Google Scholar 

  21. Vandercammen A., van Schaftingen E. 1990. The mechanism by which rat liver glucokinase is inhibited by the regulatory protein. Eur. J. Biochem. 191, 483–489.

    Article  CAS  PubMed  Google Scholar 

  22. Toyoda Y., Miwa I., Satake S., Anai M., Oka Y. 1995. Nuclear location of the regulatory protein of glucokinase in rat liver and translocation of the regulator to the cytoplasm in response to high glucose. Biochem. Biophys. Res. Commun. 215, 467–473.

    Article  CAS  PubMed  Google Scholar 

  23. Shiota C., Coffey J., Grimsby J., Grippo J.F., Magnuson M.A. 1999. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J. Biol. Chem. 274, 37125–37130.

    Article  CAS  PubMed  Google Scholar 

  24. Veiga-da-Cunha M., Van Schaftingen E. 2002. Identification of fructose 6-phosphateand fructose 1-phosphate-binding residues in the regulatory protein of glucokinase. J. Biol. Chem. 277, 8466–8473.

    Article  CAS  PubMed  Google Scholar 

  25. Grimsby J., Coffey J.W., Dvorozniak M.T., Magram J., Li G., Matschinsky F.M., Shiota C., Kaur S., Magnuson M.A., Grippo J.F. 2000. Characterization of glucokinase regulatory protein-deficient mice. J. Biol. Chem. 275, 7826–7831.

    Article  CAS  PubMed  Google Scholar 

  26. Farrelly D., Brown K.S., Tieman A., Ren J., Lira S.A., Hagan D., Gregg R., Mookhtiar K.A., Hariharan N. 1999. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: A sequestration mechanism in metabolic regulation. Proc. Natl. Acad. Sci. U. S. A. 96, 14511–14516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pino M.F., Kim K.-A., Shelton K.D., Lindner J., Odili S., Li C., Collins H.W., Shiota M., Matschinsky F.M., Magnuson M.A. 2007. Glucokinase thermolability and hepatic regulatory protein binding are essential factors for predicting the blood glucose phenotype of missense mutations. J. Biol. Chem. 282, 13906–13916.

    Article  CAS  PubMed  Google Scholar 

  28. Ling Y., Li X., Gu Q., Chen H., Lu D., Gao X. 2011. Associations of common polymorphisms in GCKR with type 2 diabetes and related traits in a Han Chinese population: A case-control study. BMC Med. Genet. doi 10.1186/1471-2350-12-66

    Google Scholar 

  29. Horvatovich K., Bokor S., Polgar N., Kisfali P., Hadarits F., Jaromi L. Csongei V., Repasy J., Molnar D., Melegh B. 2011. Functional glucokinase regulator gene variants have inverse effects on triglyceride and glucose levels, and decrease the risk of obesity in children. Diabetes Metab. 37, 432–439.

    Article  CAS  PubMed  Google Scholar 

  30. Pollin T.I., Jablonski K.A., Mc Ateer J.B., Saxena R., Kathiresan S., Kahn S.E., Goldberg R.B., Altshuler D., Florez J.C; Diabetes Prevention Program Research Group. 2011. Triglyceride response to an intensive lifestyle intervention is enhanced in carriers of the GCKR Pro446Leu polymorphism. J. Clin. Endocrinol. Metab. 96, E1142–E1147.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rees M.G., Wincovitch S., Schultz J., Waterstradt R., Beer N.L., Baltrusch S., Collins F.S., Gloyn A.L. 2012. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia. 55, 114–122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rees M.G., Ng D., Ruppert S., Turner C., Beer N.L., Swift A.J., Morken M.A., Below J.E., Blech I.; NISC Comparative Sequencing Program, Mullikin J.C., Mc Carthy M.I., Biesecker L.G., Gloyn A.L., Collins F.S. 2012. Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes. J. Clin. Invest. 122, 205–217.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Orho-Melander M., Melander O., Guiducci C., Perez Martinez P., Corella D., Roos C., Tewhey R., Rieder M.J,. Hall J., Abecasis G., Tai E.S., Welch C., Arnett D.K., Lyssenko V., Lindholm E., Saxena R., de Bakker P.I., Burtt N., Voight B.F., Hirschhorn J.N., Tucker K.L., Hedner T., Tuomi T., Isomaa B., Eriksson K.F., Taskinen M.R., Wahlstrand B., Hughes T.E., Parnell L.D., Lai C.Q., Berglund G., Peltonen L., Vartiainen E., Jousilahti P., Havulinna A.S., Salomaa V., Nilsson P., Groop L., Altshuler D., Ordovas J.M., Kathiresan S. 2008. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes. 57, 3112–3121.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ridker P.M., Pare G., Parker A., Zee R.Y., Danik J.S., Buring J.E., Kwiatkowski D., Cook N.R., Miletich J.P., Chasman D.I. 2008. Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: The Women’s Genome Health Study. Am. J. Hum. Genet. 82, 1185–1192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Saxena R., Hivert M.F., Langenberg C., et al. 2010. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Illig T., Gieger C., Zhai G., Römisch- Margl W., Wang Sattler R., Prehn C., Altmaier E., Kastenmüller G., Kato B.S., Mewes H.W., Meitinger T., de Angelis M.H., Kronenberg F., Soranzo N., Wichmann H.E., Spector T.D., Adamski J., Suhre K. 2010. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–141.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ingelsson E., Langenberg C., Hivert M.F., et al. 2010. Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes. 59, 1266–1275.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dupuis J., Langenberg C., Prokopenko I., et al. 2010. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Suhre K., Shin S.Y., Petersen A.K., et al. 2011. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 477, 54–60.

    Article  CAS  PubMed  Google Scholar 

  40. Teslovich T.M., Musunuru K., Smith A.V., et al. 2010. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 466, 707–713.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pautsch A., Stadler N., Löhle A., Rist W., Berg A., Glocker L., Nar H., Reinert D., Lenter M., Heckel A., Schnapp G., Kauschke S.G. 2013. Crystal structure of glucokinase regulatory protein. Biochemistry. 52, 3523–3531.

    Article  CAS  PubMed  Google Scholar 

  42. Choi J.M., Seo M.-H., Kyeong H.-H., Kim E., Kim H.S. 2013. Molecular basis for the role of regulatory protein as the allosteric switch for glucokinase. Proc. Natl. Acad. Sci. U. S. A. 110, 10171–10176.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Beck T., Miller B. 2013. Structural basis for regulation of human glucokinase by glucokinase regulatory protein. Biochemistry. 52, 6232–6239.

    Article  CAS  PubMed  Google Scholar 

  44. Chen K., Michelsen K., Kurzeja R.J.M., Han J., Vazir M., St Jean D.J.,Jr., Hale C., Wahl R.C. 2014. Discovery of small-molecule glucokinase regulatory protein modulators that restore glucokinase activity. J. Biomol. Screen. 19, 1014–1023.

    Article  PubMed  Google Scholar 

  45. Lloyd D.J., St. Jean D.J.,Jr., Kurzeja R.J., Wahl R.C., Michelsen K., Cupples R., Chen M., Wu J., Sivits G., Helmering J., Komorowski R., Ashton K.S., Pennington L.D., Fotsch C., Vazir M., Chen K., Chmait S., Zhang J., Liu L., Norman M.H., Andrews K.L., Bartberger M.D., Van G., Galbreath E.J., Vonderfecht S.L., Wang M., Jordan S.R., Véniant M.M., Hale C. 2013. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature. 504, 437–440.

    Article  CAS  PubMed  Google Scholar 

  46. Ashton K.S., Andrews K.L., Bryan M.C., Chen J., Chen K., Chen M., Chmait S., Croghan M., Cupples R., Fotsch C., Helmering J., Jordan S.R., Kurzeja R.J., Michelsen K., Pennington L.D., Poon S.F., Sivits G,. Van G., Vonderfecht S.L., Wahl R.C., Zhang J., Lloyd D.J., Hale C., St. Jean D.J.,Jr. 2014. Small molecular disruptors of the glucokinase-glucokinase regulatory protein interaction: Discovery of a novel tool compound for in vivo proof-of-concept. J. Med. Chem. 57, 309–324.

    Article  CAS  PubMed  Google Scholar 

  47. St. Jean D.J., Jr., Ashton K.S., Bartberger M.D., Chen J., Chmait S., Cupples R., Galbreath E., Helmering J., Hong F.T., Jordan S.R., Liu L., Kunz R.K., Michelsen K., Nishimura N., Pennington L.D., Poon S.F., Reid D., Sivits G., Stec M.M., Tadesse S., Tamayo N., Van G., Yang K.C., Zhang J., Norman M.H., Fotsch C., Lloyd D.J., Hale C. 2014. Small molecular disruptors of the glucokinase-glucokinase regulatory protein interaction: Leveraging structure-based drug design to identify analogues with improved pharmacokinetic profiles. J. Med. Chem. 57, 325–338.

    Article  CAS  PubMed  Google Scholar 

  48. Nishimura N., Norman M.H., Liu L., Yang K.C., Ashton K.S., Bartberger M.D., Chmait S., Chen J., Cupples R., Fotsch C., Helmering J., Jordan S.R., Kunz R.K., Pennington L.D., Poon S.F., Siegmund A., Sivits G., Lloyd D.J., Hale C., St. Jean D.J.,Jr. 2014. Small molecular disruptors of the glucokinase-glucokinase regulatory protein interaction: Structure–activity relationships within the aryl carbinol region of the N-arylsulfonamido-N'-arylpiperazine series. J. Med. Chem. 57, 3094–3116.

    Article  CAS  PubMed  Google Scholar 

  49. Hong F.-T., Norman M.H., Ashton K.S., Bartberger M.D., Chen J., Chmait S., Cupples R., Fotsch C., Jordan S.R., Lloyd D.J., Sivits G., Tadesse S., Hale C., St Jean D.J., Jr. 2014. Small molecular disruptors of the glucokinaseglucokinase regulatory protein interaction: Exploration of a novel binding pocket. J. Med. Chem. 5, 5949–5964.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Rubtsov.

Additional information

Original Russian Text © P.M. Rubtsov, E.L. Igudin, A.N. Tiulpakov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 4, pp. 555–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubtsov, P.M., Igudin, E.L. & Tiulpakov, A.N. Glucokinase and glucokinase regulatory proteins as molecular targets for novel antidiabetic drugs. Mol Biol 49, 494–499 (2015). https://doi.org/10.1134/S0026893315040147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315040147

Keywords

Navigation