Skip to main content
Log in

Role of reactive oxygen species in the bactericidal action of quinolones as inhibitors of DNA gyrase

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Quinolone antibiotics inhibit DNA gyrase, but the induced degradation of chromosomal DNA is determined by a complex process of the joint action of quinolones and hydroxyl radical, OH’. In this study, we used inducible specific lux biosensors, i.e., Escherichia coli bacteria containing hybrid plasmids pColD’::lux, pSoxS’::lux, and pKatG’::lux, to quantify the level of stress responses and their time dependence in bacterial cells. Quinolones (nalidixic acid and norfloxacin) were shown to induce SOS response and oxidative stress with the formation of superoxide anion in Escherichia coli cells. The main parameters of SOS response and oxidative stress, which depend on the quinolone concentration, were determined. The formation of superoxide anion occurred almost simultaneously with the SOS response. The mutant strain E. coli sodA sodB, which contains no active forms of superoxide dismutases SodA and SodB is characterized by an increased resistance to quinolones compared to wild-type cells. At high concentrations of quinolones (>20 μg/mL nalidixic acid and >500 ng/mL norfloxacin), their bactericidal effect is partially caused by the conversion of the superoxide anion to hydrogen peroxide H2O2 conducted by superoxide dismutases SodA and SodB, which is followed by the Fenton reaction and the formation of toxic hydroxyl radical OH’. At low concentrations of quinolones (<20 μg/mL nalidixic acid and <500 ng/mL norfloxacin), the contribution of the reactive oxygen species in the antimicrobial effect is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Malik M., Drlica K. 2006. Moxifloxacin lethality with Mycobacterium tuberculosis in the presence or absence of chloramphenicol. Antimicrob. Agents Chemother. 50, 2842–2844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hedge S.S., Vetting M.W., Roderick S.L., Mitchenall L.A., Maxwell A., Takiff H.E., Blanchard J.S. 2005. A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science. 308, 1480–1483.

    Article  Google Scholar 

  3. Malik M., Zhoo X., Drlica K. 2006. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol. Microbiol. 61, 810–825.

    Article  CAS  PubMed  Google Scholar 

  4. Dwyer D.J., Kohanski M.A., Hayele B., Collins J.J. 2007. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91–106.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kohanski M.A., Dwyer D.J., Hayele B., Lawrence C.A., Collins J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 130, 797–810.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X., Zhao X., Malik M., Drlica K. 2010. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J. Antimicrob. Chemother. 65, 520–524.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dwyer D.J., Kohanski M.A., Collins J.J. 2009. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 12, 482–489.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang X., Zhao X. 2009. Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53, 1395–1402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kohanski M.A., Dwyer D.J., Collins J.J. 2010. How antibiotics kill bacteria: From targets to networks. Nature Rev. Microbiol. 8, 423–435.

    Article  CAS  Google Scholar 

  10. Shatalin K., Shatalina E., Mironov A., Nudler E. 2011. H2S: A universal defense against antibiotics in bacteria. Science. 334, 986–990.

    Article  CAS  PubMed  Google Scholar 

  11. Belenky P., Collins J.J. 2011. Antioxidant strategies to tolerate antibiotics. Science. 334, 915–916.

    Article  CAS  PubMed  Google Scholar 

  12. Foti J.J., Devadoss B., Winkler J.A., Collins J.J., Walker G.C. 2012. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 336, 315–319.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu Y., Imlay J.A. 2013. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 339, 1210–1213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Keren I., Wu Y., Inocencio J., Mulcahy L.R., Lewis K. 2013. Killing by bactericidial antibiotics does not dependent on reactive oxygen species. Science. 339, 1213–1217.

    Article  CAS  PubMed  Google Scholar 

  15. Carlioz A., Touati D. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life? EMBO J. 5, 623–630.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Sambrook J., Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  17. Zavilgelsky G.B., Kotova V.Yu., Manukhov I.V. 2007. Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat. Res. 634, 172–176.

    Article  CAS  PubMed  Google Scholar 

  18. Imlay J.A., Chin S.M., Linn S. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science. 240, 640–642.

    Article  CAS  PubMed  Google Scholar 

  19. Park S., You X., Imlay J.A. 2005. Substantial DNA damage from submicromolar Intracellular hydrogen peroxide detected in Hpxmutants of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 102, 9317–9322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kuo O.C., Mashino T., Fridovich I. 1987. Alpha, beta-dihydroxyisovalerate dehydratase: A superoxide-sensitive enzyme. J. Biol. Chem. 262, 4724–4727.

    CAS  PubMed  Google Scholar 

  21. Gardner P.R., Fridovich I. 1991. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J. Biol. Chem. 266, 1478–1483.

    CAS  PubMed  Google Scholar 

  22. Gardner P.R., Fridovich I. 1991. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 19328–19333.

    CAS  PubMed  Google Scholar 

  23. Liochev S.I., Fridovich I. 1992. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. Natl. Acad. Sci. U. S. A. 89, 5892–5896.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Flint D.H., Tuminello J.F., Emptage M.H. 1993. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268. 22369–22371.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Zavilgelsky.

Additional information

Original Russian Text © V.Yu. Kotova, A.S. Mironov, G.B. Zavilgelsky, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 6, pp. 990–998.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotova, V.Y., Mironov, A.S. & Zavilgelsky, G.B. Role of reactive oxygen species in the bactericidal action of quinolones as inhibitors of DNA gyrase. Mol Biol 48, 870–877 (2014). https://doi.org/10.1134/S0026893314060107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314060107

Keywords

Navigation