Skip to main content
Log in

Satellite DNA transcripts in blood plasma as potential markers of tumor growth

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recent studies of human and animal tumor tissues revealed a high transcriptional activity of pericentromeric satellite DNA repeats; i.e., they were found to produce up to half of all transcripts in tumor cells, which is many times more than in normal cells. It was also found that the two subtypes of satellite DNA (HSATII and GSATII) are transcribed reciprocally, i.e., HSATII transcripts strongly dominate in tumors, while GSATII transcripts are more abundant in the corresponding normal tissues. Since different RNAs are present in blood plasma, and some of them serve as efficient tumor markers, this study was undertaken to evaluate for the first time satellite HSATII and GSATII RNA levels in the plasma of healthy donors and cancer patients. The RT-PCR protocol designed for this purpose enabled detection of both HSATII and GSATII transcripts. It was shown that HSATII transcripts were more abundant than GSATII RNAs in the plasma of healthy donors, and this relationship was inverse in the plasma of cancer patients; these ratios were exactly opposite to those that exist within normal and tumor cells. Some notions concerning the probable origins of circulating satellite RNAs and their role as potential tumor markers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ITP:

isotachophoresis

DGE:

digital gene expression

Ct:

threshold cycle (the number of amplification cycles required to reach the threshold fluorescence level, depends logarithmically on the initial template abundance)

RFU:

relative fluorescence unit

References

  1. Britten R.J., Davidson E.H. 1969. Gene regulation for higher cells: A theory. Science. 165, 349–357.

    Article  CAS  PubMed  Google Scholar 

  2. Pasquinelli A.E. 2012. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nature Rev. Genet. 13, 271–282.

    CAS  PubMed  Google Scholar 

  3. Baer C., Claus R., Plass C. 2013. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73, 473–477.

    Article  CAS  PubMed  Google Scholar 

  4. Castel S.E., Martienssen R.A. 2013. RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nature Rev. Genet. 14, 100–112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pennisi E. 2013. Long noncoding RNAs may alter chromosome’s 3D structure. Science. 340, 910–910.

    CAS  Google Scholar 

  6. Fatica A., Bozzoni I. 2014. Long non-coding RNAs: New players in cell differentiation and development. Nature Rev. Genet. 15, 7–21.

    Article  CAS  PubMed  Google Scholar 

  7. Gvozdev V.A. 2013. Regulatory small RNAs. Biochemistry (Moscow). 78, 561.

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y., Wang J.P., Yu X.L., Wang Z. B., Xu T. S., Cheng X. C. 2013. Non-coding RNAs and diseases. Mol. Biol. (Moscow). 47, 465–475.

    Article  CAS  Google Scholar 

  9. Andreasen D., Fog J.U., Biggs W. Salomon J., Dahslveen I.K., Baker A., Mouritzen P. 2010. Improved microRNA quantification in total RNA from clinical samples. Methods. 50, S6–S9.

    Article  CAS  PubMed  Google Scholar 

  10. Brunner A., Beck A., Edris B., Sweeney R.T., Zhu S.X., Li R., Montgomery K., Varma S., Gilks T., Guo X., Foley J.W., Witten D.M., Giacomini C.P., Flynn R.A., Pollack J.R., Tibshirani R., Chang H.Y., van de Rijn M., West R.B. 2012. Transcriptional profiling of lncRNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol. 13, R75.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chang S., Wang R.H., Akagi K., Kim K.A., Martin B.K., Cavallone L., Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab), Haines D.C., Basik M., Mai P., Poggi E., Isaacs C., Looi L.M., Mun K.S., Greene M.H., Byers S.W., Teo S.H., Deng C.X., Sharan S.K. 2011. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nature Med. 17, 1275–1282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gibb E.A., Vucic E.A., Enfield K.S.S., Stewart G.L., Lonergan K.M., Kennett J.Y., Becker-Santos D.D., MacAulay C.E., Lam S., Brown C.J., Lam W.L. 2011. Human cancer long non-coding RNA transcriptomes. PLoS ONE. 6, e25915.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Burgess D.J. 2011. Chromosome instability: Tumorigenesis via satellite link. Nature Rev. Cancer. 11, 158–159.

    Article  CAS  Google Scholar 

  14. Ting D.T., Lipson D., Paul S., Brannigan B.W., Akhavanfard S., Coffman E.J., Contino G., Deshpande V., Iafrate A.J., Letovsky S., Rivera M.N., Bardeesy N., Maheswaran S., Haber D.A. 2011. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 331, 593–596.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sheinerman K.S., Tsivinsky V.G., Umansky S.R. 2013. Analysis of organ-enriched microRNAs in plasma as an approach to development of Universal Screening Test: feasibility study. J. Transl. Med. 11, 304–311.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Nikitina I.G., Sabirova E.Yu., Karpov V.L. Lisitsyn N.A., Beresten S.F. 2013. The role of exosomes and microvesicules in carcinogenesis. Mol. Biol. (Moscow). 47, 668–673.

    Article  CAS  Google Scholar 

  17. Gusachenko O.N., Zenkova M.A., Vlassov V.V. 2013. Nucleic acids in exosomes: Disease markers and intercellular communication molecules. Biochemistry (Moscow). 78, 1–7.

    Article  CAS  Google Scholar 

  18. Gerlinger M., Rowan A.J., Horswell S. et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892.

    Article  CAS  PubMed  Google Scholar 

  19. Swanton C. 2012. Intratumor heterogeneity: Evolution through space and time. Cancer Res. 72, 4875–4882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Fisher R., Pusztai L., Swanton C. 2013. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer. 108, 479–485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Diaz L.A., Jr., Williams R.T., Wu J., Kinde I., Hecht J.R., Berlin J., Allen B., Bozic I., Reiter J.G., Nowak M.A., Kinzler K.W., Oliner K.S., Vogelstein B. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 486, 537–540.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Narayan A., Carriero N.J., Gettinger S.N., Kluytenaar J., Kozak K.R., Yock T.I., Muscato N.E., Ugarelli P., Decker R.H., Patel A.A. 2012. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res. 72, 3492–3498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Takeshita N., Hoshino I., Mori M., Akutsu Y., Hanari N., Yoneyama Y., Ikeda N., Isozaki Y., Maruyama T., Akanuma N., Komatsu A., Jitsukawa M., Matsubara H. 2013. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br. J. Cancer. 108, 644–652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zen K., Zhang C.Y. 2012. Circulating microRNAs: A novel class of biomarkers to diagnose and monitor human cancers. Med. Res. Rev. 32, 326–348.

    Article  PubMed  Google Scholar 

  25. Lipson D., Raz T., Kieu A., Jones D.R., Giladi E., Thayer E., Thompson J.F., Letovsky S., Milos P., Causey M. 2009. Quantification of the yeast transcriptome by single-molecule sequencing. Nature Biotechnol. 27, 652–658.

    Article  CAS  Google Scholar 

  26. Chomczynski P., Sacchi N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nature Protoc. 1, 581–585.

    Article  CAS  Google Scholar 

  27. Kondratova V.N., Botezatu I.V., Shelepov V.P., Lichtenstein A.V. 2011. Tube gel isotachophoresis: A method for quantitative isolation of nucleic acids from diluted solutions. Anal. Biochem. 408, 304–308.

    Article  CAS  PubMed  Google Scholar 

  28. Rozen S., Skaletsky H. 2000. Primer3 on the www for general users and for biologist programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology, vol. 132. Eds Krawetz S., Misener S. Totowa, NJ: Humana Press, pp. 365–386.

    Google Scholar 

  29. Marullo M., Zuccato C., Mariotti C., Lahiri N., Tabrizi S.J., Di D.S., Cattaneo E. 2010. Expressed Alu repeats as a novel, reliable tool for normalization of real-time quantitative RT-qPCR data. Genome Biol. 11, R9.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lekanne Deprez R.H., Fijnvandraat A.C., Ruijter J.M., Moorman A.F. 2002. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal. Biochem. 307, 63–69.

    Article  CAS  PubMed  Google Scholar 

  31. Liss B. 2002. Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acids Res. 30, e89.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin.Chem. 55, 611–622.

    Article  CAS  PubMed  Google Scholar 

  33. Vandesompele J., De P.K., Pattyn F., Poppe B., Roy N.V., De Paepe A., Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–research0034.11

    Article  Google Scholar 

  34. Cerkovnik P., Perhavec A., Zgajnar J., Novakovic S. 2007. Optimization of an RNA isolation procedure from plasma samples. Int. J. Mol. Med. 20, 293–300.

    CAS  PubMed  Google Scholar 

  35. El-Hefnawy T., Raja S., Kelly L., Bigbee W.L., Kirkwood J.M., Luketich J.D., Godfrey T.E. 2004. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 50, 564–573.

    Article  CAS  PubMed  Google Scholar 

  36. Kondratova V.N., Botezatu I.V., Shelepov V.P., Lichtenstein A.V. 2009. Isotachophoresis of nucleic acids in agarose gel rods. Biochemistry (Moscow). 74, 1285–1288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lichtenstein.

Additional information

Original Russian Text © V.N. Kondratova, I.V. Botezatu, V.P. Shelepov, A.V. Lichtenstein, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 6, pp. 999–1007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratova, V.N., Botezatu, I.V., Shelepov, V.P. et al. Satellite DNA transcripts in blood plasma as potential markers of tumor growth. Mol Biol 48, 878–885 (2014). https://doi.org/10.1134/S0026893314060089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314060089

Keywords

Navigation