Skip to main content
Log in

Delayed augmentation effect of cytokine production after hyperthermia stimuli

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Heatstroke is considered an important condition that may contribute to endothelial cell damage. The aim of this study was to assess temporal profiles of the cytokine (IL-6 and IL-8) and mRNA production when endothelial cells undergo higher temperature stimuli. In the first group, human umbilical vascular endothelial cells (HUVECs) were cultured at 4 different temperatures (37, 38, 39 or 40°C) for 1, 3 and 5 h. In the second group, HUVECs were cultured at 37°C for 4 h or 23 h, after stimulation by heating for one hour at the same culture temperatures used in the first group (37°C to 40°C). After culturing, IL-6 and IL-8 mRNA and protein levels were measured. It has been found the cytokine mRNA levels being significantly higher (p < 0.001) in all cells incubated at higher temperaturesthan those in the control (cultivation at 37°C). At the same time, the production of IL-6 and 8 at a higher temperature (39, 40°C) was significantly lower (p < 0.001) than at 37°C (control), and the decrease was temperature dependent. However, IL-6 and IL-8 levelswere significantly greater in the cells at 23 h after transient hyperthermic (40°C, 1 h) stimulation than in control ones (p < 0.001). After a transient hyperthermia, the production of the cytokinesin HUVECs is initially inhibited and then augmented. The results indicated that tissue injury might continue to develop after a hyperthermic event. There might be a potent risk for underestimation of cytokine induced tissue injury in the acute phase of a heatstroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinoshita K., Chatzipanteli K., Vitarbo E., Truettner J.S., Alonso O.F., Dietrich W.D. 2002. Interleukin-1beta messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: Importance of injury severity and brain temperature. Neurosurgery. 51, 195–203.

    Article  PubMed  Google Scholar 

  2. Vitarbo E.A., Chatzipanteli K., Kinoshita K., Truettner J.S., Alonso O.F., Dietrich W.D. 2004. Tumor necrosis factor alpha expression and protein levels after fluid percussion injury in rats: The effect of injury severity and brain temperature. Neurosurgery. 55, 416–425.

    Article  PubMed  Google Scholar 

  3. Noda A., Kinoshita K., Sakurai A., Matsumoto T., Mugishima H., Tanjoh K. 2008. Hyperglycemia and lipopolysaccharide decrease depression effect of interleukin 8 production by hypothermia: An experimental study with endothelial cells. Intensive Care Med. 34, 109–115.

    Article  CAS  PubMed  Google Scholar 

  4. Russwurm S., Stonans I., Schwerter K., Stonane E., Meissner W., Reinhart K. 2002. Direct influence of mild hypothermia on cytokine expression and release in cultures of human peripheral blood mononuclear cells. J. Interferon Cytokine Res. 22, 215–221.

    Article  CAS  PubMed  Google Scholar 

  5. Fairchild K.D., Viscardi R.M., Hester L., Singh I.S., Hasday J.D. 2000. Effects of hypothermia and hyperthermia on cytokine production by cultured human mononuclear phagocytes from adults and newborns. J. Interferon Cytokine Res. 20, 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  6. Ensor, J.E., Crawford E.K., Hasday J.D. 1995. Warming macrophages to febrile range destabilizes tumor necrosis factor-mRNA without inducing heat shock. Am. J. Physiol. Cell Physiol. 269, C1140–C1146.

    CAS  Google Scholar 

  7. Ensor J.E., Wiener S.M., McCrea K.A., Viscardi R.M., Crawford E.K., Hasday J.D. 1994. Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-expression. Am. J. Physiol. Cell Physiol. 266, C967–C974.

    CAS  Google Scholar 

  8. Jiang Q., Cross A.S., Singh I.S., Chem T.T., Viscardi R.M., Hasday J.D. 2000. Febrile core temperatureis essential for optimal host defense in bacterial peritonitis. Infect. Immun. 68, 1265–1270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bouchama A., Hammani M.M., Haq A., Jackson J., al-Sedairy S. 1996. Evidence for endothelial cell activation/injury in heatstroke. Crit. Care Med. 24, 1173–1178.

    Article  CAS  PubMed  Google Scholar 

  10. Hammami M.M., Bouchama A., Al-Sedairy S., Shail E., Al-Ohaly Y., Mohamed G.E. 1997. Concentrations of soluble tumor necrosis factor and interleukin-6 receptors in heatstroke and heat stress. Crit. Care Med. 25, 1314–1319.

    Article  CAS  PubMed  Google Scholar 

  11. Hubbard R.W., Bowers W.D., Matthew W.T., Curtis F.C., Criss R.E., Sheldon G.M., Ratteree J.W. 1977. Rat model of acute heatstroke mortality. J. Appl. Physiol. 42, 809–816.

    CAS  PubMed  Google Scholar 

  12. Lu K.C., Wang J.Y., Lin S.H., Chu P., Lin Y.F. 2004. Role of circulating cytokines and chemokines in exertional heatstroke. Crit. Care Med. 32, 399–403.

    Article  CAS  PubMed  Google Scholar 

  13. Bouchama A., Al-Sedairy S., Siddiqui S., Shail E., Rezeig M. 1993. Elevated pyrogenic cytokines in heatstroke. Chest. 104, 1498–502.

    Article  CAS  PubMed  Google Scholar 

  14. Bouchama A., Knochel J.P. 2002. Heat stroke. N. Engl. J. Med. 346, 1978–1988.

    Article  CAS  PubMed  Google Scholar 

  15. Bouchama A., Parhar R.S., el-Yazigi A., Sheth K., al-Sedairy S. 1991. Endotoxemia and release of tumor necrosis factor and interleukin 1 in acute heatstroke. J. Appl. Physiol. 70, 2640–2644.

    CAS  PubMed  Google Scholar 

  16. Meng Q., He C., Shuaib A., Wang C.X. 2012. Hyperthermia worsens ischaemic brain injury through destruction of microvessels in an embolic model in rats. Int. J. Hyperthermia. 28, 24–32.

    Article  CAS  PubMed  Google Scholar 

  17. Shah N.G., Tulapurkar M.E., Damarla M., Singh I.S., Goldblum S.E., Shapiro P., Hasday J.D. 2012. Febrilerange hyperthermia augments reversible TNF-α-induced hyperpermeability in human microvascular lung endothelial cells. Int. J. Hyperthermia. 28, 627–635.

    Article  CAS  PubMed  Google Scholar 

  18. Mantovani A., Dejana E. 1989. Cytokines as communication signals between leukocytes and endothelial cells. Immunol.Today. 10, 370–375.

    Article  CAS  PubMed  Google Scholar 

  19. Baggiolini M., Dewald B., Moser B. 1994. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. 55, 97–179.

    Article  CAS  PubMed  Google Scholar 

  20. Singh I.S., Viscardi R.M., Kalvakolanu I., Calderwood S., Hasday J.D. 2000. Inhibition of tumor necrosis factoralpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator. J. Biol. Chem. 275, 9841–9848.

    Article  CAS  PubMed  Google Scholar 

  21. Bouchama A., Roberts G., Al Mohanna F., El-Sayed R., Lach B., Chollet-Martin S., Ollivier V., Al Baradei R., Loualich A., Nakeeb S., Eldali A., de Prost D. 2005. Inflammatory, hemostatic and clinical changes in a baboon experimental model for heatstroke. J. Appl. Physiol. 98, 697–705.

    Article  CAS  PubMed  Google Scholar 

  22. Gathiram P., Wells M.T., Brock-Utne J.G., Gaffin S.L. 1987. Antilipopolysaccharide improves survival in primates subjected to heatstroke. Circ Shock. 23, 57–164.

    Google Scholar 

  23. Gathiram P., Wells M.T, Raidoo D., Brock-Utne J.G., Gaffin S.L. 1988. Portal and systemic plasma lipopolysaccharide concentrations in heat-stressed primates. Circ Shock. 25, 223–230.

    CAS  PubMed  Google Scholar 

  24. Hall D.M., Buettner G.R., Oberley L.W., Xu L, Matthes R.D., Gisolfi C.V. 2001. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol. Heart Circ. Physiol. 280, H509–H521.

    CAS  PubMed  Google Scholar 

  25. Lambert G.P., Gisolfi C.V., Berg D.J., Moseley P.L., Oberley L.W., Kregel K.C. 2002. Selected contribution: Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. J. Appl. Physiol. 92, 1750–1761.

    CAS  PubMed  Google Scholar 

  26. Nakabe N., Kokura S., Shimozawa M., Katada K., Sakamoto N., Ishikawa T., Handa O., Takagi T., Naito Y., Yoshida N., Yoshikawa T. 2007. Hyperthermia attenuates TNF-alpha-induced up regulation of endothelial cell adhesion molecules in human arterial endothelial cells. Int. J. Hyperthermia. 23, 217–224.

    Article  CAS  PubMed  Google Scholar 

  27. Wong H.R., Ryan M.A., Menendez I.Y., Wispé J.R. 1999. Heat shock activates the I-kappa-B-alpha promoter and increases I-kappa-B-alpha mRNA expression. Cell Stress Chaperones. 4, 1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Eshel G.M, Safar P., Stezoski W. 2001.The role of the gut in the pathogenesis of death due to hyperthermia. Am. J. Forensic. Med. Pathol. 22, 100–104.

    Article  CAS  PubMed  Google Scholar 

  29. Fukumura D., Miura S., Kurose I., Higuchi H., Suzuki H., Ebinuma H., Han J.Y., Watanabe N., Wakabayashi G., Kitajima M., Ishii H. 1996. IL-1 is an important mediator for microcirculatory changes in endotoxininduced intestinal mucosal damage. Dig. Dis. Sci. 41, 2482–2492.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kinoshita.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 3, pp. 429–435.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinoshita, K., Sakurai, A., Yamaguchi, J. et al. Delayed augmentation effect of cytokine production after hyperthermia stimuli. Mol Biol 48, 371–376 (2014). https://doi.org/10.1134/S0026893314030108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314030108

Keywords

Navigation