Skip to main content
Log in

Selection of reference genes for quantitative real-time PCR in six oil-tea camellia based on RNA-seq

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

qRT-PCR is becoming a routine tool in molecular biology to study gene expression. It is necessary to find stable reference genes when performing qRT-PCR. The expression of genes cloned in oil-tea camellia currently cannot be accurately analyzed due to a lack of suitable reference genes. We collected different tissues (including roots, stems, leaves, flowers and seeds) from six oil-tea camellia species to determine stable reference genes. Five novel and ten traditional reference gene sequences were selected from the RNA-seq database of Camellia oleifera Abel seeds and specific PCR Primers were designed for each. Cycle threshold (C t) data were obtained from each reaction for all samples. Three different software tools, geNorm, NormFinder and Best-Keeper were applied to calculate the expression stability of the candidate reference genes according to the C t values. The results were similar between the three software packages, and indicated that the traditional genes TUBα-3, ACT7α and the novel gene CESA were relatively stable in all species and tissues. However, no genes were sufficiently stable across all species and tissues, thus the optimal number of reference genes required for accurate normalization varied from 2 to 6. Finally, the relative expression of squalene synthase (SQS) and squalene epoxidase (SQE) genes related to important ingredients squalene and tea saponin in oil-tea camellia seeds were compared by using stable to less stable reference genes. The comparison results validated the selection of reference genes in the current study. In summary, for the different tissues of six oil-tea camellia species different optimal numbers of suitable reference genes were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang Z., Ling C., Yamashita M., et al. 2010. Microarray-driven validation of reference genes for quantitative real-time polymerase chain reaction in a rat vocal fold model of mucosal injury. Anal. Biochem. 406(2), 214–221.

    Article  PubMed  CAS  Google Scholar 

  2. Umenishi F., Verkman A.S., Gropper M.A. 1996. Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protection assay. DNA Cell Biol. 15, 475–480.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang L., Zhou W., Velculescu V.E., et al. 1997. Gene expression profiles in normal and cancer cells. Science. 276(5316), 1268–1272.

    Article  PubMed  CAS  Google Scholar 

  4. Demidenko N.V., Logacheva M.D., Penin A.A. 2011. Selection and validation of reference genes for quantitative real-time PCR in Buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PloS ONE. 6(5), e19434.

    Article  PubMed  CAS  Google Scholar 

  5. Huggett J., Dheda K., Bustin S., et al. 2005. Real-time RT-PCR normalization: Strategies and considerations. Genes Immun. 6(4), 279–284.

    Article  PubMed  CAS  Google Scholar 

  6. Paolacci A.R., Tanzarella O.A., Porceddu E., Ciaffi M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10(1), 11.

    Article  PubMed  Google Scholar 

  7. Maccoux L.J., Clements D.N., Salway F., Day P.J. 2007. Identification of new reference genes for the normalization of canine osteoarthritic joint tissue transcripts from microarray data. BMC Mol. Biol. 8(1), 62.

    Article  PubMed  Google Scholar 

  8. Migocka M., Papierniak A. 2011. Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol. Breeding. 28(3), 343–357.

    Article  Google Scholar 

  9. Dheda K., Huggett J.F., Chang J.S., et al. 2005. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal. Biochem. 344(1), 141–143.

    Article  PubMed  CAS  Google Scholar 

  10. Andersen C.L., Jensen J.L., Ørntoft T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data, a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64(15), 5245.

    Article  PubMed  CAS  Google Scholar 

  11. Qi J., Yu S., Zhang F., Shen X., Zhao X., Yu Y., Zhang D. 2010. Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ss. pekinensis). Plant Mol. Biol. Rep. 28(4), 597–604.

    Article  CAS  Google Scholar 

  12. Hruz T., Wyss M., Docquier M., et al. 2011. RefGenes, identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 12(1), 156.

    Article  PubMed  CAS  Google Scholar 

  13. Zhuang R.L., Yao X.H. 2008. Oil-Tea Camellia of China, 2nd ed. Beijing: Chinese Forestry Publ., pp. 1–10 (in Chinese).

    Google Scholar 

  14. Vijayan K., Zhang W.J., Tsou C.H. 2009. Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. Am. J. Bot. 96(7), 1348–1360.

    Article  PubMed  CAS  Google Scholar 

  15. Tan X.F., Hu F.M., Xie L.S., et al. 2006. Construction of EST library and analysis of main expressed genes of Camellia oleifera seeds. Sci. Silvae Sinicae (China). 42(1), 43–48.

    Google Scholar 

  16. Lin P., Cao Y.Q., Yao X.H., et al. 2011. Transcriptome analysis of Camellia oleifera Abel seed in four development stages. Mol. Plant Breeding (China). 19(4), 498–505.

    Google Scholar 

  17. Hu X., Tan X., Tian X., et al. 2008. cDNA cloning, sequence analysis and physiological role speculation of a dehydrin-like protein from Camellia oleifera. Acta Bot. Boreali-Occidentalia Sinica (China). 28(8), 1541–1548.

    CAS  Google Scholar 

  18. Jiang Y., Tan X.F., Zhang D.Q., et al. 2009. Cloning and sequence analysis of a metallothionein gene from Camellia oleifera. Acta Agric. Univ. Jiangxiensis (China). 31(4), 699–705.

    CAS  Google Scholar 

  19. Luo Q., Xie L.S., Tan X.F., et al. 2008. Cloning of full-length cDNA of FAD2 gene from Camellia oleifera. Sci. Silvae Sinicae (China). 44(3), 70–75.

    Google Scholar 

  20. Zhang D., Tan X., Chen H., et al. 2008. Full-length cDNA cloning and bioinformatic analysis of Camellia oleifera SAD. Sci. Silvae Sinicae. 44(2), 155–159.

    CAS  Google Scholar 

  21. Wang B., Tan X.F., Chen Y., et al. 2012. Molecular cloning and expression analysis of two calmodulin genes encoding an identical protein from Camellia olerfera. Pak. J. Bot. 44(3), 961–968.

    CAS  Google Scholar 

  22. Shao G., Tan X.F., Chen H., et al. 2012. Isolation and characterization of an aldo-keto reductase cDNA from Camellia oleifera seed. Adv. Sci. Lett. (China). 10(1), 153–157.

    Article  CAS  Google Scholar 

  23. Han X.J., Lu M., Chen Y., et al. 2012. Selection of reliable reference genes for gene expression studies using real-time PCR in tung tree during seed development. PloS ONE. 7(8), e43084.

    Article  PubMed  CAS  Google Scholar 

  24. Li R., Zhu H., Ruan J., et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272.

    Article  PubMed  CAS  Google Scholar 

  25. Mortazavi A., Williams B.A., McCue K., Schaeffer L., Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods. 5(7), 621–628.

    Article  PubMed  CAS  Google Scholar 

  26. Czechowski T., Stitt M., Altmann T., et al. 2005. Genome-wide identification and testing of superior referencegenes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17.

    Article  PubMed  CAS  Google Scholar 

  27. Expósito-Rodríguez M., Borges A.A., Borges-Pérez A., et al. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 8, 131.

    Article  PubMed  Google Scholar 

  28. Chang E., Shi S., Liu J., et al. 2012. Selection of reference genes for quantitative gene expression studies in Platycladus orientalis (Cupressaceae) using real-time PCR. PloS ONE. 7(3), e33278.

    Article  PubMed  CAS  Google Scholar 

  29. Do R., Kiss R.S., Gaudet D., et al. 2009. Squalene synthase, a critical enzyme in the cholesterol biosynthesis pathway. Clin. Genet. 75(1), 19–29.

    Article  PubMed  CAS  Google Scholar 

  30. Beytia E., Qureshi A.A., Porter J.W. 1973. Squalene synthetase III. Mechanism of the reacion. J. Biol. Chem. 248(5), 1856–1867.

    PubMed  CAS  Google Scholar 

  31. M’Baya B., Fegueur M., Servouse M., et al. 1989. Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids. 24(12), 1020–1023.

    Article  PubMed  Google Scholar 

  32. Vandesompele J., De Preter K., Pattyn F., et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), res. 0034.

    Google Scholar 

  33. Pfaffl M.W., Tichopad A., Prgomet C., et al. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26(6), 509–515.

    Article  PubMed  CAS  Google Scholar 

  34. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔCt method. Methods. 25(4), 402–408.

    Article  PubMed  CAS  Google Scholar 

  35. Benn C.L., Fox H., Bates G. 2008. Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington’s disease. Mol. Neurodegener. 3(1), 17.

    Article  PubMed  Google Scholar 

  36. Yan J., Yuan F., Long G., et al. 2011. Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol. Biol. Rep. 39(2), 1831–1838.

    Article  PubMed  Google Scholar 

  37. Tong Z., Gao Z., Wang F., et al. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol. Biol. 10(1), 71.

    Article  PubMed  Google Scholar 

  38. Zhu G.P., Li J.Y., Fan Z.Q., et al. 2011. Isolation of B function CjDEF-1 gene involved in floral development in Camellia japonica Hongshibaxueshi and its expression analysis. J. Agric. Biotechnol. 19(3), 442–448.

    CAS  Google Scholar 

  39. Zhou X.W., Li J.Y., Fan Z.Q. 2012. Cloning and expression analysis of chalcone isomerase gene cDNA from Camellia nitidissima. Forest Res. (China). 25(1), 93–99.

    Google Scholar 

  40. Radonić A., Thulke S., Mackay I.M., Landt O., Siegert W., Nitsche A. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313(4), 856–862.

    Article  PubMed  Google Scholar 

  41. Raaijmakers M.H., van Emst L., de Witte T., Mensink E., Raymakers R.A. 2002. Quantitative assessment of gene expression in highly purified hematopoietic cells using real-time reverse transcriptase polymerase chain reaction. Exp. Hematol. 30(5), 481–487.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Zhou.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 6, pp. 959–975.

The article is published in the original.

Zhou C.F. and Lin P. made an equal contribution to the study, and should be regarded as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C.F., Lin, P., Yao, X.H. et al. Selection of reference genes for quantitative real-time PCR in six oil-tea camellia based on RNA-seq. Mol Biol 47, 836–851 (2013). https://doi.org/10.1134/S0026893313060198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313060198

Keywords

Navigation