Skip to main content
Log in

Prenylation: From bacteria to eukaryotes

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

For their protection from host cell immune defense, intracellular pathogens of eukaryotic cells developed a variety of mechanisms, including secretion systems III and IV which can inject bacterial effectors directly into eukaryotic cells. These effectors may function inside the host cell and may be posttranslationally modified by host cell machinery. Recently, prenylation was added to the list of possible posttranslational modifications of bacterial proteins. In this work we describe the current state of the knowledge about the prenylation of eukaryotic and prokaryotic proteins and prenylation inhibitors. The bioinformatics analyses suggest the possibility of prenylation for a number of Francisella genus proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPPS:

decaprenyl pyrophosphate syntase

FGPPS:

farnesyl pyrophosphate synthase

FPP:

farnesyl pyrophosphate

FT:

farnesyltransferase

FTI:

farnesyltransferase inhibitors

GGPPS:

geranylgeranyl pyrophosphate synthase

GGT1:

geranylgeranyltransferase type I

GGT2:

geranylgeranyltransferase type II

GPP:

geranyl pyrophosphate

HepPPS:

heptaprenyl pyrophosphate synthase

HMG-CoA:

3-hydroxy-3-methylglutaryl-coenzyme A

ICMT:

isoprenyl-cysteine carboxyl methyltransferase

IPP:

isopentenyl pyrophosphate)

IPPS:

(isoprenyl pyrophosphate synthases)

MVA:

mevalonate

MVAP:

5-phosphomevalonate

OPPS:

octaprenyl pyrophosphate synthase

RCE1:

Ras-converting enzyme 1

SCV:

Salmonella-containing vacuole)

SPPS:

solanesyl pyrophosphate synthase)

UPP:

undecaprenyl pyrophosphate synthase

ER:

endoplasmic reticulum

References

  1. Liang P.H., Ko T.P., Wang A.H. 2002. Structure, mechanism and function of prenyltransferases. Eur. J. Biochem. 269, 3339–3354.

    Article  PubMed  CAS  Google Scholar 

  2. Casey P.J. 1992. Biochemistry of protein prenylation. J. Lipid Res. 33, 1731–1740.

    PubMed  CAS  Google Scholar 

  3. Al-Quadan T., Price C.T., London N., Schueler-Furman O., AbuKwaik Y. 2011. Anchoring of bacterial effectors to host membranes through host-mediated lipidation by prenylation: A common paradigm. Trends Microbiol. 19, 573–579.

    Article  PubMed  CAS  Google Scholar 

  4. Kamiya Y., Sakurai A., Tamura S., Takahashi N. 1978. Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem. Biophys. Res. Commun. 83, 1077–1083.

    Article  PubMed  CAS  Google Scholar 

  5. Anderegg R.J., Betz R., Carr S.A., Crabb J.W., Duntze W. 1988. Structure of Saccharomyces cerevisiae mating hormone a-factor: Identification of S-farnesyl cysteine as a structural component. J. Biol. Chem. 263, 18236–18240.

    PubMed  CAS  Google Scholar 

  6. Gelb M.H., Scholten J.D., Sebolt-Leopold J.S. 1998. Protein prenylation: From discovery to prospects for cancer treatment. Curr. Opin. Chem. Biol. 2, 40–48.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang F.L., Casey P.J. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269.

    Article  PubMed  CAS  Google Scholar 

  8. Chan L.N., Hart C., Guo L., et al. 2009. A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis. 30, 3598–3606.

    Article  PubMed  CAS  Google Scholar 

  9. Wollack J.W., Zeliadt N.A., Mullen D.G., et al. 2009. Multifunctional prenylated peptides for live cell analysis. J. Am. Chem. Soc. 131, 7293–7303.

    Article  PubMed  CAS  Google Scholar 

  10. Gao J., Liao J., Yang G.Y. 2009. CAAX-box protein, prenylation process and carcinogenesis. Am. J. Transl. Res. 1, 312–325.

    PubMed  Google Scholar 

  11. Roberts P.J., Mitin N., Keller P.J., et al. 2008. Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J. Biol. Chem. 283, 5150–5163.

    Google Scholar 

  12. Kellogg B.A., Poulter C.D. 1997. Chain elongation in the isoprenoid biosynthetic pathway. Curr. Opin. Chem. Biol. 1, 570–578.

    Article  PubMed  CAS  Google Scholar 

  13. Ogura K., Koyama T. 1998. Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98, 1263–1276.

    Article  PubMed  CAS  Google Scholar 

  14. Wolfe L.M., Mahaffey S.B., Kruh N.A., Dobos K.M. 2010. Proteomic definition of the cell wall of Mycobacterium tuberculosis. J. Proteome Res. 9, 5816–5826.

    Article  PubMed  CAS  Google Scholar 

  15. Fujihashi M., Zhang Y.W., Higuchi Y., Li X.Y., et al. 2001. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl. Acad. Sci. U. S. A. 98, 4337–4342.

    Article  PubMed  CAS  Google Scholar 

  16. Ko T.P., Chen Y.K., Robinson H., et al. 2001. Mechanism of product chain length determination and the role of a flexible loop in Escherichia coli undecaprenyl-pyrophosphate synthase catalysis. J. Biol. Chem. 276, 47474–47482.

    Article  PubMed  CAS  Google Scholar 

  17. Reid T.S., Terry K.L., Casey P.J., Beese L.S. 2004. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J. Mol. Biol. 343, 417–433.

    Article  PubMed  CAS  Google Scholar 

  18. Benetka W., Koranda M., Maurer-Stroh S., Pittner F., Eisenhaber F. 2006. Farnesylation or geranylgeranylation? Efficient assays for testing protein prenylation in vitro and in vivo. BMC Biochem. 7, 6.

    Article  PubMed  Google Scholar 

  19. Roskoski R., Jr. 2003. Protein prenylation: A pivotal posttranslational process. Biochem. Biophys. Res. Commun. 303, 1–7.

    Article  PubMed  CAS  Google Scholar 

  20. Eisenhaber B., Eisenhaber F. 2010. Prediction of post-translational modification of proteins from their amino acid sequence. Methods Mol. Biol. 609, 365–384.

    Article  PubMed  CAS  Google Scholar 

  21. Maurer-Stroh S., Eisenhaber F. 2005. Refinement and prediction of protein prenylation motifs. Genome Biol. 6, R55.

    Article  PubMed  Google Scholar 

  22. Maurer-Stroh S., Koranda M., Benetka W., et al. 2007. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comp. Biol. 3, e66.

    Article  Google Scholar 

  23. Krzysiak A.J., Rawat D.S., Scott S.A., Pais J.E., Handley M., et al. 2007 Combinatorial modulation of protein prenylation. ACS Chem. Biol. 2, 385–389.

    Article  PubMed  CAS  Google Scholar 

  24. Trueblood C.E., Ohya Y., Rine J. 1993. Genetic evidence for in vivo cross-specificity of the CaaX-box protein prenyltransferases farnesyltransferase and geranylgeranyltransferase-I in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 4260–4275.

    PubMed  CAS  Google Scholar 

  25. Navarro-Lerida I., Sanchez-Perales S., Calvo M., et al. 2012. A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J. 31, 534–551.

    Article  PubMed  CAS  Google Scholar 

  26. Novelli G., D’Apice M.R. 2012. Protein farnesylation and disease. J. Inher. Metab. Dis. 35, 917–926.

    Article  PubMed  CAS  Google Scholar 

  27. Al-Khodor S., Abu Kwaik Y. 2010. Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCalpha and betaI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell. Microbiol. 12, 1604–1621.

    Article  PubMed  CAS  Google Scholar 

  28. Eastman R.T., Buckner F.S., Yokoyama K., Gelb M.H., van Voorhis W.C. 2006. Thematic review series: Lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J. Lipid Res. 47, 233–240.

    Article  PubMed  CAS  Google Scholar 

  29. De Smedt F., Boom A., Pesesse X., Schiffmann S.N., Erneux C. 1996. Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J. Biol. 271, 10419–10424.

    Google Scholar 

  30. Chakrabarti D., Da Silva T., Barger J., et al. 2002. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum. J. Biol. Chem. 277, 42066–42073.

    Article  PubMed  CAS  Google Scholar 

  31. Yokoyama K., Lin Y., Stuart K.D., Gelb M.H. 1997. Prenylation of proteins in Trypanosoma brucei. Mol. Biochem. Parasitol. 87, 61–69.

    Article  PubMed  CAS  Google Scholar 

  32. Yokoyama K., Trobridge P., Buckner F.S., et al. 1998. Protein farnesyltransferase from Trypanosoma brucei: A heterodimer of 61- and 65-kDa subunits as a new target for antiparasite therapeutics. J. Biol. Chem. 273, 26497–26505.

    Article  PubMed  CAS  Google Scholar 

  33. Buckner F.S., Yokoyama K., Nguyen L., et al. 2000. Cloning, heterologous expression, and distinct substrate specificity of protein farnesyltransferase from Trypanosoma brucei. J. Biol. Chem. 275, 21870–21876.

    Article  PubMed  CAS  Google Scholar 

  34. Engelson E.J., Buckner F.S., Van Voorhis W.C. 2011. An essential farnesylated kinesin in Trypanosoma brucei. PloS ONE. 6, e26508.

    Article  PubMed  CAS  Google Scholar 

  35. Sorek N., Gutman O., Bar E., et al. 2011. Differential effects of prenylation and s-acylation on type I and II ROPS membrane interaction and function. Plant Physiol. 155, 706–720.

    Article  PubMed  CAS  Google Scholar 

  36. Sohn H.Y., Son K.H., Kwon C.S., Kwon G.S., Kang S.S. 2004. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait, and Echinosophora koreensis Nakai. Phytomed.: Int. J. Phytother. Phytopharmacol. 11, 666–672.

    Article  CAS  Google Scholar 

  37. Mayaka R.K., Langat M.K., Omolo J.O., Cheplogoi P.K. 2012. Antimicrobial prenylated acetophenones from berries of Harrisonia abyssinica. Planta Med. 78, 383–386.

    Article  PubMed  Google Scholar 

  38. Price C.T., Jones S.C., Amundson K.E., Kwaik Y.A. 2010. Host-mediated post-translational prenylation of novel dot/icm-translocated effectors of Legionella pneumophila. Front. Microbiol. 1, 131.

    PubMed  CAS  Google Scholar 

  39. Reinicke A.T., Hutchinson J.L., Magee A.I., et al. 2005. A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J. Biol. Chem. 280, 4620–4627.

    Article  Google Scholar 

  40. Brumell J.H., Goosney D.L., Finlay B.B. 2002. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic. 3, 407–415.

    Article  PubMed  CAS  Google Scholar 

  41. Price C., Al-Quadan T., Santic M., Jones S.C., Abu Kwaik Y. 2010. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J. Exp. Med. 207, 1713–1726.

    Article  PubMed  CAS  Google Scholar 

  42. Al-Quadan T., Kwaik Y.A. 2011. Molecular characterization of exploitation of the polyubiquitination and farnesylation machineries of Dictyostelium discoideum by the AnkB F-box effector of Legionella pneumophila. Front. Microbiol. 2, 23.

    Article  PubMed  CAS  Google Scholar 

  43. Al-Khodor S., Price C.T., Habyarimana F., Kalia A., Abu Kwaik Y. 2008. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol. Microbiol. 70, 908–923.

    PubMed  CAS  Google Scholar 

  44. Ivanov S.S., Charron G., Hang H.C., Roy C.R. 2010. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J. Biol. Chem. 285, 34686–34698.

    Article  PubMed  CAS  Google Scholar 

  45. Al-Quadan T., Price C.T., Abu Kwaik Y. 2012. Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Trends Microbiol. 20, 299–306.

    Article  PubMed  CAS  Google Scholar 

  46. Richards A.M., Von Dwingelo J.E., Price C.T., Abu Kwaik Y. 2013. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence. 4(4), 307–314.

    Article  PubMed  Google Scholar 

  47. Asare R., Abu Kwaik Y. 2010. Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ. Microbiol. 12, 2559–2586.

    Article  PubMed  CAS  Google Scholar 

  48. Fujikura K., Maki Y., Ohya N., Satoh M., Koyama T. 2008. Kinetic studies of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase reaction using 3-desmethyl allylic substrate analogs. Biosci. Bbiotechnol. Biochem. 72, 851–855.

    Article  CAS  Google Scholar 

  49. Lytle C.A., Gan Y.D., Salone K., White D.C. 2001. Sensitive characterization of microbial ubiquinones from biofilms by electrospray/mass spectrometry. Environ. Microbiol. 3, 265–272.

    Article  PubMed  CAS  Google Scholar 

  50. Bonitz T., Alva V., Saleh O., Lupas A.N., Heide L. 2011. Evolutionary relationships of microbial aromatic prenyltransferases. PloS ONE. 6, e27336.

    Article  PubMed  CAS  Google Scholar 

  51. Metzger U., Keller S., Stevenson C.E., Heide L., Lawson D.M. 2010. Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway. J. Mol. Biol. 404, 611–626.

    Article  PubMed  CAS  Google Scholar 

  52. Sugiyama A., Linley P.J., Sasaki K., Kumano T., Yamamoto H., et al. 2011. Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases. Metab. Eng. 13, 629–637.

    Article  PubMed  CAS  Google Scholar 

  53. Kumano T., Richard S.B., Noel J.P., Nishiyama M., Kuzuyama T. 2008. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities. Bioorg. Med. Chem. 16, 8117–8126.

    Article  PubMed  CAS  Google Scholar 

  54. Ozaki T., Mishima S., Nishiyama M., Kuzuyama T. 2009. NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenyl-propanoids and flavonoids. J. Antibiot. (Tokyo). 62, 385–392.

    Article  PubMed  CAS  Google Scholar 

  55. Ozaki T., Nishiyama M., Kuzuyama T. 2013. Novel tryptophan metabolism by a potential gene cluster that is widely distributed among Actinomycetes. J. Biol. Chem. 288, 9946–9956.

    Article  PubMed  CAS  Google Scholar 

  56. Horn M.P., Knecht S.M., Rushing F.L., et al. 2008. Simvastatin inhibits Staphylococcus aureus host cell invasion through modulation of isoprenoid intermediates. J. Pharmacol. Exp. Ther. 326, 135–143.

    Article  PubMed  CAS  Google Scholar 

  57. Vanhaesebroeck B., Waterfield M.D. 1999. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res. 253, 239–254.

    Article  PubMed  CAS  Google Scholar 

  58. Tsuji F., Ishihara A., Kurata K., et al. 2012. Geranyl modification on the tryptophan residue of ComXRO-E-2 pheromone by a cell-free system. FEBS Lett. 586, 174–179.

    Article  PubMed  CAS  Google Scholar 

  59. Tsuji F., Ishihara A., Nakagawa A., et al. 2012. Lack of the consensus sequence necessary for tryptophan prenylation in the ComX pheromone precursor. Biosci. Biotechnol. Biochem. 76, 1492–1496.

    Article  PubMed  CAS  Google Scholar 

  60. Dumelin C.E., Chen Y., Leconte A.M., Chen Y.G., Liu D.R. 2012. Discovery and biological characterization of geranylated RNA in bacteria. Nature Chem. Biol. 8, 913–919.

    CAS  Google Scholar 

  61. Benetka W., Koranda M., Eisenhaber F. 2006. Protein prenylation: An (almost) comprehensive overview on discovery history, enzymology, and significance in physiology and disease. Monatsh. Chem. 137, 1241–1281.

    Article  CAS  Google Scholar 

  62. Liang P.H. 2009. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry. 48, 6562–6570.

    Article  PubMed  CAS  Google Scholar 

  63. Appels N.M., Beijnen J.H., Schellens J.H. 2005. Development of farnesyl transferase inhibitors: A review. Oncologist. 10, 565–578.

    Article  PubMed  Google Scholar 

  64. Britten C.D., Rowinsky E.K., Soignet S., et al. 2001. A phase I and pharmacological study of the farnesyl protein transferase inhibitor L-778,123 in patients with solid malignancies. Clin. Cancer Res. Am. Assoc. Cancer Res. 7, 3894–3903.

    CAS  Google Scholar 

  65. Reid T.S., Long S.B., Beese L.S. 2004. Crystallographic analysis reveals that anticancer clinical candidate L-778,123 inhibits protein farnesyltransferase and geranylgeranyltransferase-I by different binding modes. Biochemistry. 43, 9000–9008.

    Article  PubMed  CAS  Google Scholar 

  66. Gelb M.H., Brunsveld L., Hrycyna C.A., et al. 2006. Therapeutic intervention based on protein prenylation and associated modifications. Nature Chem. Biol. 2, 518–528.

    Article  CAS  Google Scholar 

  67. Hast M.A., Fletcher S., Cummings C.G., et al. 2009. Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase. Chem. Biol. 16, 181–192.

    Article  PubMed  CAS  Google Scholar 

  68. Howe R., Kelly M., Jimah J., Hodge D., Odom A.R. 2013. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryotic Cell. 12, 215–223.

    Article  PubMed  CAS  Google Scholar 

  69. Winter-Vann A.M., Kamen B.A., Bergo M.O., et al. 2003. Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate. Proc. Natl. Acad. Sci. U. S. A. 100, 6529–6534.

    Article  PubMed  CAS  Google Scholar 

  70. Thurnher M., Nussbaumer O., Gruenbacher G. 2012. Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clin. Cancer Res. Am. Assoc. Cancer Res. 18, 3524–3531.

    Article  CAS  Google Scholar 

  71. Rice K.R., Koch M.O., Cheng L., Masterson T.A. 2012. Dyslipidemia, statins, and prostate cancer. Exp. Rev. Anticancer Ther. 12, 981–990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baranova.

Additional information

Original Russian Text © E.S. Marakasova, N.K. Akhmatova, M. Amaya, B. Eisenhaber, F. Eisenhaber, M.L. van Hoek, A.V. Baranova, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 5, pp. 717–730.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marakasova, E.S., Akhmatova, N.K., Amaya, M. et al. Prenylation: From bacteria to eukaryotes. Mol Biol 47, 622–633 (2013). https://doi.org/10.1134/S0026893313050130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313050130

Keywords

Navigation