Skip to main content
Log in

Cloning and expression of a novel antifreeze protein AFP72 from the beetle Tenebrio molitor

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A novel antifreeze protein AFP72 cDNA (GenBbank accession No. AY929389) was obtained by RT-PCR from Tenebrio molitor. The 216 bp fragment encodes a protein of 72 amino acid residues. Sequence analysis revealed that the cDNA displays a high degree of homology with T. molitor antifreeze proteins, ranging up to 90.78%. Recombinant plasmids pMAL-p2X-afp72 and pMAL-c2X-afp72 were transferred into E. coli TBI to induce a MBP fusion protein by IPTG. The target fusion protein was released from the periplasm and cytoplasm by the cold osmotic shock procedure and sonication respectively. The content of the fusion protein came up to 38.9 and 41.5% of the total dissolved protein, respectively. The fusion protein was purified through an amylose affinity column, and incised by factor Xa. Molecular sieve chromatography was used to achieve a high state of purity of the target protein. The purified target protein di splayed a single band in SDS-PAGE. The fusion protein was shown to increase resistance to low temperatures in bacteria. This finding could help in further investigations of the properties and function of antifreeze proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raymond J.A., deVries A.L. 1997. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. U. S. A. 74, 2589–2593.

    Article  Google Scholar 

  2. Qiu L.M., Wang Y., Wang J., Zhang F., Ma J. 2010. Expression of biologically active recombinant antifreeze protein His-MpAFP149 from the desert beetle (Microdera punctipennis dzungarica) in Escherichia coli. Mol. Biol. Rep. 37, 1725–1732.

    Article  PubMed  CAS  Google Scholar 

  3. Fletcher G.L., Hew C.L., Davies P.L. 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359–390.

    Article  PubMed  CAS  Google Scholar 

  4. Duman J.G. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 63, 327–357.

    Article  PubMed  CAS  Google Scholar 

  5. Muryoi N., Sato M., Kaneko S., Kawahara H., Obata H., Yaish M.W.F., Griffith M., Glick B.R. 2004. Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J. Bacteriol. 186, 5661–5671.

    Article  PubMed  CAS  Google Scholar 

  6. Graham L.A., Liou Y.C., Walker V.K., Davies P.L. 1997. Hyperactive antifreeze protein from beetles. Nature. 388, 727–728.

    Article  PubMed  CAS  Google Scholar 

  7. Tyshenko M.G., Doucet D., Davies P.L., Walker V.K. 1997. The antifreeze potential of the spruce budworm thermal hysteresis protein. Nature Biotechnol. 15, 887–890.

    Article  CAS  Google Scholar 

  8. Graham L.A., Walker V.K., Davies P.L. 2000. Developmental and environmental regulation of antifreeze proteins in the mealworm beetle Tenebrio molitor. Eur. J. Biochem. 267, 6452–6458.

    Article  PubMed  CAS  Google Scholar 

  9. Qin W., Walker V.K. 2006. Tenebrio molitor antifreeze protein gene identification and regulation. Gene. 367, 142–149.

    Article  PubMed  CAS  Google Scholar 

  10. Liou Y.C., Thibault P., Walker V.K., Davies P.L., Graham L.A. 1999. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor. Biochemistry. 38, 11415–11424.

    Article  PubMed  CAS  Google Scholar 

  11. Liou Y.C., Tocilj A., Davies P.L., Jia Z.C. 2000. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature. 406, 322–324.

    Article  PubMed  CAS  Google Scholar 

  12. Yue C.W., Zhang Y.Z. 2009. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli. Mol. Biol. Rep. 36, 529–536.

    Article  PubMed  CAS  Google Scholar 

  13. Liu Z.Y., Zhang F.C., Wang T., Lu G.D. 2005. Expression of the antifreeze gene of a pyrochroid beetle Dendroides canadensis in prokaryote and detection of the protein biological activity. Acta Entomol. Sinica. 48, 179–183.

    CAS  Google Scholar 

  14. Zhao G., Ma J., Xue N., Yang C.G., Zhuan F.F., Zhang F.C. 2005. Cloning of a cDNA encoding antifreeze protein in Microdera punctipenis dzunarica (Coleoptera: Tenebrionidae) and its activity assay. Acta Entomol. Sinica. 48, 667–673.

    CAS  Google Scholar 

  15. Bar M., Bar-Ziv R., Scherf T., Fass D. 2006. Efficient production of a folded and functional, highly disulfidebonded β-helix antifreeze protein in bacteria. Prot. Exp. Purif. 48, 243–252.

    Article  CAS  Google Scholar 

  16. Tyshenko M.G., d’Anjou M., Davies P.L., Daugulis A.J., Walker V.K. 2006. Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast. Prot. Exp. Purif. 47, 152–161.

    Article  CAS  Google Scholar 

  17. Sambrook J., Fritsch E.F., Maniatis T. 2000. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  18. Griffith M., Ewart K.V. 1995. Antifreeze proteins and their potential use in frozen foods. Biotech. Adv. 13, 375–402.

    Article  CAS  Google Scholar 

  19. Younis A.I., Rooks B., Khan S. 1998. The effects of antifreeze peptide III (afp) and insulin transferrin selenium (its) on cryopreservation of chimpanzee (Pan troglodytes) spermatozoa. J. Androl. 19, 207–214.

    PubMed  CAS  Google Scholar 

  20. Soltys K.A., Batta A.K., Koneru B. 2001. Successful nonfreezing, subzero preservation of rat liver with 2, 3-butanediol and type I antifreeze protein. J. Surg. Res. 96, 30–34.

    Article  PubMed  CAS  Google Scholar 

  21. Amir G., Rubinsky B., Kassif Y. 2003. Preservation of myocyte structure and mitochondrial integrity in subzero cryopreservation of mammalian hearts for transplantation using antifreeze proteins-an electron microscopy study. Eur. J. Cardiothorac. Surg. 24, 292–297.

    Article  PubMed  Google Scholar 

  22. Chao H., Davies P.L., Carpenter J.F. 1999. Effects of antifreeze proteins on red blood cells survival during cryopreservation. J. Exp. Biol. 199, 2071–2076.

    Google Scholar 

  23. Carpenter J.F., Hansen T.N. 1992. Antifreeze protein modulates cells survival during cryopreservation: Mediation through influence on ice crystal growth. Proc. Natl. Acad. Sci. U. S. A. 89, 8953–8957.

    Article  PubMed  CAS  Google Scholar 

  24. Marshall C.B., Daley M.E., Graham L.A. 2002. Identification of the ice-binding face of antifreeze protein from Tenebrio molitor. FEBS Lett. 529, 261–267.

    Article  PubMed  CAS  Google Scholar 

  25. Marshall C.B., Daley M.E., Sykes B.D. 2004. Enhancing the activity of a beta-helical antifreeze protein by the engineered addition of coils. Biochemistry. 43, 11637–11646.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-hua Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Qh., Yang, L., Wang, Q. et al. Cloning and expression of a novel antifreeze protein AFP72 from the beetle Tenebrio molitor . Mol Biol 46, 514–521 (2012). https://doi.org/10.1134/S0026893312030090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312030090

Keywords

Navigation