Skip to main content
Log in

Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver, and cisplatin

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present, there is no rational explanation how CTR1 can transfer platinum group which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand the phenomenon, we analyzed 25 sequences of chordate CTR1 proteins and found out the conserved patterns of organization of N-terminal extracellular part of CTR1 which is responsible for initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that the relative position of methionine- and histidine-rich copper-binding motifs predisposes the extracellular CTR1 region to binding of copper, silver, and cisplatin. Relation between the tissuespecific expression of the CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo were analyzed. Significant positive yet incomplete correlation was found to exist between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested which avoids disagreement between CTR1-mediated cisplatin transport in vitro and irreversible binding of platinum to Met-rich peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PC:

principal component

TMD:

transmembrane domain

References

  1. Karlin K.D. 1993. Metalloenzymes, structural motif, and inorganic models. Science. 261, 701–717.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenzweig A.C., Sazinsky M.H. 2006. Structural insights into dioxygen-activating copper enzymes. Curr. Opin. Struct. Biol. 16, 729–735.

    Article  PubMed  CAS  Google Scholar 

  3. Madsen E., Gitlin J.D. 2007. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 30, 317–337.

    Article  PubMed  CAS  Google Scholar 

  4. Mufti A.R., Burstein E., Duckett C.S. 2007. XIAP: Cell death regulation meets copper homeostasis. Arch. Biochem. Biophys. 463, 168–174.

    Article  PubMed  CAS  Google Scholar 

  5. Martin F., Linden T., Katschinski D.M. 2005. Copperdependent activation of hypoxia-inducible factor (HIF)-1: Implications for ceruloplasmin regulation. Blood. 105, 4613–4619.

    Article  PubMed  CAS  Google Scholar 

  6. Gaggelli E., Kozlowski H., Valensin D., Valensin G. 2006. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044.

    Article  PubMed  CAS  Google Scholar 

  7. Aller S., Unger V. 2006. Projection structure of the human copper transporter CTR1 at 6-Å resolution reveals a compact trimer with a novel channel-like architecture. Proc. Natl. Acad. Sci. U. S. A. 103, 3627–3632.

    Article  PubMed  CAS  Google Scholar 

  8. Samsonov S.A., Platonova N.A., Skvortsov A.N., Tsymbalenko N.V., Vasin A.V., Puchkova L.V. 2006. Relationships between CTR1 activity and copper status in different rat organs. Mol. Biol. (Moscow). 40, 207–217.

    Article  CAS  Google Scholar 

  9. Sharp P. 2003. Ctr1 and its role in body copper homeostasis. Int. J. Biochem. Cell Biol. 35, 288–291.

    Article  PubMed  CAS  Google Scholar 

  10. Lee J., Pena M.M., Nose Y., Thiele D.J. 2002. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277, 4380–4387.

    Article  PubMed  CAS  Google Scholar 

  11. Bertinato J., Cheung L., Hoque R., Plouffe L.J. 2010. Ctr1 transports silver into mammalian cells. J. Trace Elem. Med. Biol. 24, 178–184.

    Article  PubMed  CAS  Google Scholar 

  12. Ishida S., Lee J., Thiele D.J., Herskowitz I. 2002. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. acad. Sci. U. S. A. 99, 14298–14302.

    Article  PubMed  CAS  Google Scholar 

  13. Kuo M.T., Chen H.H.W., Song I.S., Savaraj N., Ishikawa T. 2007. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev. 26, 71–83.

    Article  PubMed  CAS  Google Scholar 

  14. De Feo C.J., Aller S.G., Siluvai G.S., Blackburn N.J., Unger V.M. 2009. Three-dimensional structure of the human copper transporter hCTR1. Proc. Natl. Acad. Sci. U. S. A. 106, 4237–4242.

    Article  PubMed  Google Scholar 

  15. Ilyechova E., Skvortsov A., Zatulovsky E., Tsymbalenko N., Shavlovsky M., Broggini M., Puchkova L. 2011. Experimental switching of copper status in laboratory rodents. J. Trace Elem. Med. Biol. 25, 27–35.

    Article  PubMed  CAS  Google Scholar 

  16. Klotchenko S.A., Tsymbalenko N.V., Solov’ev K.V., Skvortsov A.N., Zatulovskii E.A., Babich P.S., Platonova N.A., Shavlovskii M.M., Puchkova L.V., Broggini M. 2008. The effect of silver ions on copper metabolism and expression of genes encoding copper transport proteins in rat liver. Dokl. Biochem. Biophys. 418, 24–27.

    Article  PubMed  CAS  Google Scholar 

  17. Brereton R.G. 2007. Applied Chemometrics for Scientists. Chichester: Wiley.

    Book  Google Scholar 

  18. Engelman D.M., Steitz T.A., Goldman A. 1986. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15, 321–353.

    Article  PubMed  CAS  Google Scholar 

  19. Jones D.T., Taylor W.R., Thornton J.M. 1994. A mutation data matrix for transmembrane proteins. FEBS Lett. 339, 269–275.

    Article  PubMed  CAS  Google Scholar 

  20. Puig S., Lee J., Lau M., Thiele D.J. 2002. Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277, 26021–26030.

    Article  PubMed  CAS  Google Scholar 

  21. Klomp A.E., Juijn J.A., van der Gun L.T., van den Berg I.E., Berger R., Klomp L.W. 2003. The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem. J. 370, 881–889.

    Article  PubMed  CAS  Google Scholar 

  22. Abada P., Howell S.B. 2010. Regulation of cisplatin cytotoxicity by Cu influx transporters. Metal. Based. Drugs. 2010:317581.

    Article  PubMed  Google Scholar 

  23. van den Berghe P.V., Folmer D.E., Malingré H.E., van Beurden E., Klomp A.E., van de Sluis B., Merkx M., Berger R., Klomp L.W. 2007. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake. Biochem J. 407, 49–59.

    Article  PubMed  Google Scholar 

  24. De Feo C.J., Mootien S., Unger V.M. 2010. Tryptophan scanning analysis of the membrane domain of CTR-copper transporters. J. Membr. Biol. 234, 113–123.

    Article  PubMed  CAS  Google Scholar 

  25. Gilmore R., Blobel G. 1985. Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell. 42, 497–505.

    Article  PubMed  CAS  Google Scholar 

  26. Aller S., Eng E., De Feo C., Unger V. 2004. Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J. Biol. Chem. 279, 53435–53441.

    Article  PubMed  CAS  Google Scholar 

  27. Klomp A.E., Tops B.B., van Denberg I.E., Berger R., Klomp L.W. 2002. Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem. J. 364, 497–505.

    Article  PubMed  CAS  Google Scholar 

  28. Guo Y., Smith K., Lee J., Thiele D.J., Petris M.J. 2004. Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J. Biol. Chem. 279, 17428–17433.

    Article  PubMed  CAS  Google Scholar 

  29. Larson C.A., Adams P.L., Jandial D.D., Blair B.G., Safaei R., Howell S.B. 2010. The role of the N-terminus of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Biochem. Pharmacol. 80, 448–454.

    Article  PubMed  CAS  Google Scholar 

  30. Parr R.G., Pearson R.G. 1983. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516.

    Article  CAS  Google Scholar 

  31. Sarmah P., Deka R.C. 2008. Solvent effect on the reactivity of CIS-platinum(II) complexes: A density functional approach. Int. J. Quantum Chem. 108, 1400–1409.

    Article  CAS  Google Scholar 

  32. Shannon R.D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sec. A. 32, 751–767.

    Article  Google Scholar 

  33. CRC Handbook of Chemistry and Physics, 86th ed. 2005. Ed. Lide D.R. CRC Press.

  34. Rubino J.T., Riggs-Gelasco P., Franz K.J. 2010. Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I). J. Biol. Inorg. Chem. 15, 1033–1049.

    Article  PubMed  CAS  Google Scholar 

  35. Jiang J., Nadas I.A., Kim A.M., Franz K.J. 2005. A mets motif peptide found in copper transport proteins selectively binds Cu(I) with methionine-only coordination. Inorg. Chem. 44, 9787–9794.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L., Koay M., Maher M.J., Xiao Z., Wedd A.G. 2006. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae: Crystal structures of fully loaded Cu(I)Cu(II) forms. J. Am. Chem. Soc. 128, 5834–5850.

    Article  PubMed  CAS  Google Scholar 

  37. Haas K.L., Putterman A.B., White D.R., Thiele D.J., Franz K.J. 2011. Model peptides provide new insight into the role of histidine residues as potential ligands in human cellular copper acquision via Ctr1. J. Am. Chem. Soc. 133, 4427–4437.

    Article  PubMed  CAS  Google Scholar 

  38. Zhou B., Gitschier J. 1997. hCTR1: A human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. U. S. A. 94, 7481–7486.

    Article  PubMed  CAS  Google Scholar 

  39. Zatulovskiy E., Samsonov S., Skvortsov A. 2007. Docking study on mammalian CTR1 copper importer motifs. BMC Syst. Biol. 1(S1), P54.

    Article  Google Scholar 

  40. Linder M.C. 2001. Copper and genomic stability in mammals. Mutat. Res. 475, 141–152.

    Article  PubMed  CAS  Google Scholar 

  41. Arnesano F., Scintilla S., Natile G. 2007. Interaction between platinum complexes and a methionine motif found in copper transport proteins. Angew. Chem. Int. Ed. Engl. 46, 9062–9064.

    Article  PubMed  CAS  Google Scholar 

  42. Long F., Su C.C., Zimmermann M.T., Boyken S.E., Rajashankar K.R., Jernigan R.L., Yu E.W. 2010. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature. 467, 484–488.

    Article  PubMed  CAS  Google Scholar 

  43. Su C.C., Yang F., Long F., et al. 2009. Crystal structure of the membrane fusion protein CusB from Escherichia coli. J. Mol. Biol. 393, 342–355.

    Article  PubMed  CAS  Google Scholar 

  44. Hahn M., Kleine M., Sheldrick W.S. 2001. Interaction of cisplatin with methionine- and histidine-containing peptides: Competition between backbone binding, macrochelation and peptide cleavage. J. Bioinorg. Chem. 6, 556–566.

    CAS  Google Scholar 

  45. Reedijk J. 1999. Why does cisplatin reach G-N7 with competing S-donor ligands available in the cell. Chem. Rev. 99, 2499–2510.

    Article  PubMed  CAS  Google Scholar 

  46. Barnham K.J., Djuran M.I., Murdoch P.D.-S. Sadler P.J. 1994. Intermolecular displacement of S-bound L-methionine on platinum (II) by guanosine 5′-monophosphate. Implications for the mechanism of action of anticancer drugs. J. Chem. Soc. Chem. Commun. 721–722.

  47. Dickerson R.E., Eisenberg D., Varnum J., Kopka M.L. 1969. PtCl4 2-: A methionine-specific label for protein crystallography. J. Mol. Biol. 45, 77–84.

    Article  PubMed  CAS  Google Scholar 

  48. Ivanov A.I., Christodoulou J., Parkinson J.A., Barnham K.J., Tucker A., Woodrow J., Sadler P.J. 1998. Cisplatin binding sites on human albumin. J. Biol. Chem. 273, 14721–14730.

    Article  PubMed  CAS  Google Scholar 

  49. Wei M., Cohen S.M., Silverman A.P., Lippard S.J. 2001. Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. J. Biol. Chem. 276, 38774–38780.

    Article  PubMed  CAS  Google Scholar 

  50. Wilkinson G., Gillard R.D., McCleverty J.A. 1989. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds. Oxford: Pergamon Press.

    Google Scholar 

  51. Sze C.M., Khairallah G.N., Xiao Z., Donnelly P.S., O’Hair R.A., Wedd A.G. 2009. Interaction of cisplatin and analogues with a Met-rich protein site. J. Biol. Inorg. Chem. 14, 163–165.

    Article  PubMed  CAS  Google Scholar 

  52. Cheng C.-C., Pai C.-H. 1998. Specific displacement of glutathione from the Pt(II)-glutathione adduct by Cu(II) in neutral phosphate buffer. J. Inorg. Biochem. 71, 109–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Skvortsov.

Additional information

Original Russian Text © A.N. Skvortsov, E.A. Zatulovskiy, L.V. Puchkova, 2012, published in Molekulyarnaya Biologiya, 2012, Vol. 46, No. 2, pp. 335–347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skvortsov, A.N., Zatulovskiy, E.A. & Puchkova, L.V. Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver, and cisplatin. Mol Biol 46, 304–315 (2012). https://doi.org/10.1134/S0026893312010219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893312010219

Keywords

Navigation