Skip to main content
Log in

Expression patterns of two Arabidopsis endo-β-1,4-glucanase genes (At3g43860, At4g39000) in reproductive development

  • Molecular Biology of the Cell
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Endo-β-1,4-D-glucanases (EGases) are a widespread and vital group of glycosyl hydrolases that generally break the β-1,4-glucosyl linkages. Studies of plant EGases have mainly been concentrated on vegetative growth, while little is currently known about their role in reproductive processes. Using the GUS reporter aided analysis of promoter activities, we identified the expression patterns of two putative Arabidopsis EGases genes (At3g43860 and At4g39000) whose promoters conferred specific localization of the GUS activity in reproductive organs. We found that At3g43860, which is similar to KOR in its protein structural organization, is expressed in mature pollen and the pollen tube, implying that it may have a role in pollen and pollen tube growth. At4g39000 was found to be activated in the developing ovules and seeds, especially at the micropylar end of the inner integuments and nucellus in a proximal-distal pattern. Our results suggested that the two EGases play specific roles in Arabidopsis sexual reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cosgrove D.J. 2005. Growth of the plant cell wall. Nature. 6, 850–861.

    CAS  Google Scholar 

  2. Lerouxel O., Cavalier D.M., Liepman A.H., Keegstra K. 2006. Biosynthesis of plant cell wall polysaccharides: A complex process. Curr. Opin. Plant Biol. 9, 621–630.

    Article  PubMed  CAS  Google Scholar 

  3. Minic Z., Jouanin L. 2006. Plant glycoside hydrolases in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44, 435–449.

    Article  PubMed  CAS  Google Scholar 

  4. McQueen-Mason S.J., Cosgrove D.J. 1995. Expansin mode of action on cell walls: Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107, 87–100.

    PubMed  CAS  Google Scholar 

  5. Foreman J., Demidchik V., Bothwell J.H., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D., Davies J.M., Dolan L. 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 27, 442–446.

    Article  Google Scholar 

  6. Urbanowicz B.R., Bennett A.B., del Campillo E., Catala C., Hayashi T., Henrissat B., Hofte H., McQueen-Mason S.J., Patterson S.E., Shoseyov O., Teeri T.T., Rose J.K.C. 2007. Structural organization and a standardized nomenclature for plant endo-1,4-beta-glucanases cellulases of glycosyl hydrolase family 9. Plant Physiol. 144, 1693–1696.

    Article  PubMed  CAS  Google Scholar 

  7. Nicol F., His I., Jauneau A., Vernhettes S., Canut H., Hofte H. 1998. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576.

    Article  PubMed  CAS  Google Scholar 

  8. Zuo J., Niu Q.W., Nishizawa N., Wu Y., Kost B., Chua N.H. 2000. KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell. 12, 1137–1152.

    Article  PubMed  CAS  Google Scholar 

  9. Carpita N.C., Gibeaut D.M. 1993. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30.

    Article  PubMed  CAS  Google Scholar 

  10. Rose J.C., Bennett A.B. 1999. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: Parallels between cell expansion and fruit ripening. Trends Plant Sci. 4, 176–183.

    Article  PubMed  Google Scholar 

  11. Roberts J.A., Whitelaw C.A., Gonzalez-Carranza Z.H., McManus M.T. 2000. Cell separation processes in plants: Models, mechanisms and manipulation. Ann. Bot. 86, 223–235.

    Article  Google Scholar 

  12. Patterson S.E. 2001. Cutting loose: Abscission and dehiscence in Arabidopsis. Plant Physiol. 126, 494–500.

    Article  PubMed  CAS  Google Scholar 

  13. Flors V., de la O. Leyva M., Vicedo B., Finiti I., Real M.D., Garcia-Agustin P., Bennett A.B., Gonzalez-Bosch Carmen. 2007. Absence of the endo-β-1,4-D-glucanases Cel1 and Cel2 reduce susceptibility to Botrytis cinerea in tomato. Plant J. 52, 1027–1040.

    Article  PubMed  CAS  Google Scholar 

  14. Libertini E., Li Y., McQueen-Mason S.J. 2004. Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family. J. Mol. Evol. 58, 506–515.

    Article  PubMed  CAS  Google Scholar 

  15. Urbanowicz B.R., Catala C., Irwin D., Wilson D.B., Ripoll D.R., Rose J.K.C. 2007. A tomato endo-β-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules [CBM49]. J. Biol. Chem. 282, 12066–12074.

    Article  PubMed  CAS  Google Scholar 

  16. Peng L.C., Kawagoe Y., Hogan P., Delmer D. 2002. Sitosterol-β-glucoside as primer for cellulose synthesis in plants. Science. 295, 147–150.

    Article  PubMed  CAS  Google Scholar 

  17. Molhoj M., Johansen B., Ulvskov P., Borkhardt B. 2001. Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4-β-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol. Biol. 46, 263–275.

    Article  PubMed  CAS  Google Scholar 

  18. Shani Z., Dekel M., Tsabary G., Shoseyov O. 1997. Cloning and characterization of elongation-specific endo-beta-1,4-glucanase (Cel1) from Arabidopsis thaliana. Plant Mol. Biol. 34, 837–842.

    Article  PubMed  CAS  Google Scholar 

  19. Shani Z., Dekel M., Tsabary G., Goren R., Shoseyov O. 2004. Growth enhancement of transgenic plants by overexpression of Arabidopsis thaliana endo1,4-β-glucanase (Cel1). Plant Mol. Biol. 14, 321–330.

    Google Scholar 

  20. Shani Z., Dekel M., Roiz L., Horowitz M., Kolosovski N., Lapidot S., Alkan S., Koltai H., Tsabary G., Goren R., Shoseyov Oded. 2006. Expression of endo-1,4-endoglucanase (Cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep. 25, 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  21. Tsabary G., Shani Z., Roiz L., Levy I., Riov J., Shoseyov O. 2003. Abnormal ‘wrinkled’ cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4-β-glucanase (Cel1) antisense. Plant Mol. Biol. 51, 213–224.

    Article  PubMed  CAS  Google Scholar 

  22. del Campillo E., Abdel-Aziz A., Crawford D., Patterson S.E. 2004. Root cap specific expression of an endo-β-1,4-D-glucanase cellulase, a new marker to study root development in Arabidopsis. Plant Mol. Biol. 56, 309–323.

    Article  PubMed  Google Scholar 

  23. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  24. Jefferson R.A., Kavanagh T.A., Bevan M.W. 1987. GUS fusions, beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  25. Clough S.J., Bent A.F. 1998. Floral dip, a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  26. Li H., Lin Y., Heath R.M., Zhu M.X., Yang Z. 1999. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell. 11, 1731–1742.

    Article  PubMed  CAS  Google Scholar 

  27. Palanivelu R., Brass L., Edlund A.F., Pruess D. 2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell. 114, 47–59.

    Article  PubMed  CAS  Google Scholar 

  28. Smyth D.R., Bowman J.L., Meyerowitz E.M. 1990. Early flower development in Arabidopsis. Plant Cell. 2, 755–767.

    Article  PubMed  CAS  Google Scholar 

  29. Schneitz K., Hulskamp M., Pruitt R.E. 1995. Wild-type ovule development in Arabidopsis thaliana: A light microscope study of cleared whole-mount tissue. Plant J. 7, 731–749.

    Article  Google Scholar 

  30. Winter D., Vinegar B., Nahal H., Ammar R., Wilson G.V., Provart N.J. 2007. An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets. PloS ONE. 2, e718.

    Article  PubMed  Google Scholar 

  31. Yu H.J., Hogan P., Sundaresan V. 2005. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol. 139, 1853–1869.

    Article  PubMed  CAS  Google Scholar 

  32. Tung C.W., Dwyer K.G., Nasrallah M.E., Nasrallah J.B. 2005. Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol. 138, 977–989.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang L., Yang S.L., Xie L.F., Puah C.S., Zhang X.Q., Yang W.C., Sundaresan V., Ye D. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell. 17, 584–596.

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi J., Rudsander U.J., Hedenstrom M. 2009. KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. Plant Cell Physiol. 50, 1099–1115.

    Article  PubMed  CAS  Google Scholar 

  35. Skinner D.J., Hill T.A., Gasser C.S. 2004. Regulation of ovule development. Plant Cell. 16, S32–S45.

    Article  PubMed  CAS  Google Scholar 

  36. Pagnussat G.C., Alandete-Saez M., Bowman J.L., Sundaresan V. 2009. Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science. 324, 1684–1689.

    Article  PubMed  CAS  Google Scholar 

  37. Yang W.C., Shi D.Q., Chen Y.H. 2010. Female gametophyte development in flowering plants. Annu. Rev. Plant Biol. 61, 27.1–27.20.

    Article  Google Scholar 

  38. Coimbra S., Almeida J., Junqueira V., Costa M., Pereira L.G. 2007. Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J. Exp. Bot. 58, 4027–4035.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Qin Guo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, XJ., Huang, JJ., Gao, HH. et al. Expression patterns of two Arabidopsis endo-β-1,4-glucanase genes (At3g43860, At4g39000) in reproductive development. Mol Biol 45, 458–465 (2011). https://doi.org/10.1134/S0026893311030204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311030204

Keywords

Navigation