Skip to main content
Log in

Structural dynamics of the active center of multisubunit RNA polymerases during RNA synthesis and proofreading

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Multisubunit RNA polymerases (RNAPs) are complex molecular machines that are responsible for transcription of genes in all cellular organisms and possess several catalytic activities, the most important of which are nucleotide addition to the growing RNA chain and RNA cleavage. Switching between different RNAP activities is essential for efficient and accurate RNA synthesis and depends on the structural state of the elongation complex and the conformational dynamics of the active center of the enzyme. The active center of RNAP contains two magnesium ions, which coordinate the reactive groups of substrates, and structural elements that are involved in the binding and correct orientation of substrates and in RNAP translocation. The most important of these elements are G-loop, F-helix, and regions that affect their conformational mobility. The review discusses the mechanisms of structural rearrangements that take place in the active center of RNAP during transcription. Several examples are provided for the RNAP regulation by factors that affect the binding of the catalytic magnesium ions and the conformational mobility of the G-loop and F-helix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RNAP:

polysubunit

DNA:

dependent

RNA:

polymerase

EC:

elongation complex

Stl:

streptolydigin

Tht:

tagetitoxin

References

  1. Nikiforov V.G. 2002. The RNA polymerase structure-function study (1962–2001). Mol. Biol. 36, 143–152.

    Article  CAS  Google Scholar 

  2. Tunitskaya V.L., Kochetkov S.N. 2002. Structural-functional analysis of bacteriophage T7 RNA polymerase. Biokhimiya. 67, 1360–1373.

    Google Scholar 

  3. Sologub M.Yu., Kochetkov S.N., Temiakov D.E. 2009. Transcription and its regulation in mammalian and human mitochondria. Mol. Biol. 43, 198–210.

    Article  CAS  Google Scholar 

  4. Steitz T. A. 2006. Visualizing polynucleotide polymerase machines at work. EMBO J. 25, 3458–3468.

    Article  PubMed  CAS  Google Scholar 

  5. Steitz T.A. 2009. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr. Opin. Struct. Biol. 19, 683–690.

    Article  PubMed  CAS  Google Scholar 

  6. Cramer P. 2002. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 12, 89–97.

    Article  PubMed  CAS  Google Scholar 

  7. Sosunov V., Sosunova E., Mustaev A., Bass I., Nikiforov V., Goldfarb A. 2003. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22, 2234–2244.

    Article  PubMed  CAS  Google Scholar 

  8. Artsimovitch I., Landick R. 2000. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc. Natl. Acad. Sci. USA. 97, 7090–7095.

    Article  PubMed  CAS  Google Scholar 

  9. Toulokhonov I., Zhang J., Palangat M., Landick R. 2007. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol. Cell. 27, 406–419.

    Article  PubMed  CAS  Google Scholar 

  10. Sydow J.F., Cramer P. 2009. RNA polymerase fidelity and transcriptional proofreading. Curr. Opin. Struct. Biol. 19, 732–739.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang G., Campbell E.A., Minakhin L., Richter C., Severinov K., Darst S.A. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3. Cell. 98, 811–824.

    Article  PubMed  CAS  Google Scholar 

  12. Cramer P., Bushnell D.A., Kornberg R.D. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science. 292, 1863–1876.

    Article  PubMed  CAS  Google Scholar 

  13. Vassylyev D.G., Sekine S., Laptenko O., Lee J., Vassylyeva M.N., Borukhov S., Yokoyama S. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6. Nature. 417, 712–719.

    Article  PubMed  CAS  Google Scholar 

  14. Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. 2001. Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 Å resolution. Science. 292, 1876–1882.

    Article  PubMed  CAS  Google Scholar 

  15. Kettenberger H., Armache K.J., Cramer P. 2004. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell. 16, 955–965.

    Article  PubMed  CAS  Google Scholar 

  16. Westover K.D., Bushnell D.A., Kornberg R.D. 2004. Structural basis of transcription: Nucleotide selection by rotation in the RNA polymerase II active center. Cell. 119, 481–489.

    Article  PubMed  CAS  Google Scholar 

  17. Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., Kornberg R.D. 2006. Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis. Cell. 127, 941–954.

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan C.D., Larsson K.M., Kornberg R.D. 2008. The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. Mol. Cell. 30, 547–556.

    Article  PubMed  CAS  Google Scholar 

  19. Brueckner F., Cramer P. 2008. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nature Struct. Mol. Biol. 15, 811–818.

    Article  CAS  Google Scholar 

  20. Vassylyev D.G., Vassylyeva M.N., Perederina A., Tahirov T.H., Artsimovitch I. 2007. Structural basis for transcription elongation by bacterial RNA polymerase. Nature. 448, 157–162.

    Article  PubMed  CAS  Google Scholar 

  21. Vassylyev D.G., Vassylyeva M.N., Zhang J., Palangat M., Artsimovitch I., Landick R. 2007. Structural basis for substrate loading in bacterial RNA polymerase. Nature. 448, 163–168.

    Article  PubMed  CAS  Google Scholar 

  22. Wang D., Bushnell D.A., Huang X., Westover K.D., Levitt M., Kornberg R.D. 2009. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science. 324, 1203–1206.

    Article  PubMed  CAS  Google Scholar 

  23. Korzheva N., Mustaev A., Kozlov M., Malhotra A., Nikiforov V., Goldfarb A., Darst S.A. 2000. A structural model of transcription elongation. Science. 289, 619–625.

    Article  PubMed  CAS  Google Scholar 

  24. Bartlett M.S., Gaal T., Ross W., Gourse R.L. 1998. RNA polymerase mutants that destabilize RNA polymerasepromoter complexes alter NTP-sensing by rrn P1 promoters. J. Mol. Biol. 279, 331–345.

    Article  PubMed  CAS  Google Scholar 

  25. Kuznedelov K., Korzheva N., Mustaev A., Severinov K. 2002. Structure-based analysis of RNA polymerase function: The largest subunit’s rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length. EMBO J. 21, 1369–1378.

    Article  PubMed  CAS  Google Scholar 

  26. Kulbachinskiy A.V., Ershova G.V., Korzheva N.V., Brodolin K.L., Hikiforov V.G. 2002. Mutations in β′-subunit of the Escherichia coli RNA-polymerase influence interaction with the downstream DNA duplex in the elongation complex. Genetika. 38, 1207–1211.

    CAS  Google Scholar 

  27. Toulokhonov I., Landick R. 2006. The role of the lid element in transcription by E. coli RNA polymerase. J. Mol. Biol. 361, 644–658.

    Article  PubMed  CAS  Google Scholar 

  28. Naryshkina T., Kuznedelov K., Severinov K. 2006. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid. J. Mol. Biol. 361, 634–643.

    Article  PubMed  CAS  Google Scholar 

  29. Komissarova N., Kashlev M. 1997. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl. Acad. Sci. USA. 94, 1755–1760.

    Article  PubMed  CAS  Google Scholar 

  30. Komissarova N., Kashlev M. 1997. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329–15338.

    Article  PubMed  CAS  Google Scholar 

  31. Rozovskaya T.A., Chenchik A.A., Beabealashvilli R. 1982. Processive pyrophosphorolysis of RNA by Escherichia coli RNA polymerase. FEBS Lett. 137, 100–104.

    Article  PubMed  CAS  Google Scholar 

  32. Rozovskaya T.A., Rechinsky V.O., Bibilashvili R.S., Karpeisky M.Y., Tarusova N.B., Khomutov R.M., Dixon H.B. 1984. The mechanism of pyrophosphorolysis of RNA by RNA polymerase. Endowment of RNA polymerase with artificial exonuclease activity. Biochem. J. 224, 645–650.

    PubMed  CAS  Google Scholar 

  33. Wang D., Hawley D.K. 1993. Identification of a 3′ 5′ exonuclease activity associated with human RNA polymerase II. Proc. Natl. Acad. Sci. USA. 90, 843–847.

    Article  PubMed  CAS  Google Scholar 

  34. Orlova M., Newlands J., Das A., Goldfarb A., Borukhov S. 1995. Intrinsic transcript cleavage activity of RNA polymerase. Proc. Natl. Acad. Sci. USA. 92, 4596–4600.

    Article  PubMed  CAS  Google Scholar 

  35. Rudd M.D., Izban M.G., Luse D. S. 1994. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes. Proc. Natl. Acad. Sci. USA. 91, 8057–8061.

    Article  PubMed  CAS  Google Scholar 

  36. Sosunov V., Zorov S., Sosunova E., Nikolaev A., Zakeyeva I., Bass I., Goldfarb A., Nikiforov V., Severinov K., Mustaev A. 2005. The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase. Nucleic Acids Res. 33, 4202–4211.

    Article  PubMed  CAS  Google Scholar 

  37. Zaychikov E., Martin E., Denissova L., Kozlov M., Markovtsov V., Kashlev M., Heumann H., Nikiforov V., Goldfarb A., Mustaev A. 1996. Mapping of catalytic residues in the RNA polymerase active center. Science. 273, 107–109.

    Article  PubMed  CAS  Google Scholar 

  38. Steitz T.A., Smerdon S.J., Jager J., Joyce C.M. 1994. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science. 266, 2022–2025.

    Article  PubMed  CAS  Google Scholar 

  39. Steitz T.A. 1998. A mechanism for all polymerases. Nature. 391, 231–232.

    Article  PubMed  CAS  Google Scholar 

  40. Landick R. 2005. NTP-entry routes in multi-subunit RNA polymerases. Trends Biochem. Sci. 30, 651–654.

    Article  PubMed  CAS  Google Scholar 

  41. Kireeva M., Kashlev M., Burton Z.F. 2010. Translocation by multi-subunit RNA polymerases. Biochim. Biophys. Acta. 1799, 389–401.

    PubMed  CAS  Google Scholar 

  42. Batada N.N., Westover K.D., Bushnell D.A., Levitt M., Kornberg R.D. 2004. Diffusion of nucleoside triphosphates and role of the entry site to the RNA polymerase II active center. Proc. Natl. Acad. Sci. USA. 101, 17361–17364.

    Article  PubMed  CAS  Google Scholar 

  43. Holmes S.F., Erie D.A. 2003. Downstream DNA sequence effects on transcription elongation: Allosteric binding of nucleoside triphosphates facilitates translocation via a ratchet motion. J. Biol. Chem. 278, 35597–35608.

    Article  PubMed  CAS  Google Scholar 

  44. Gong X.Q., Zhang C., Feig M., Burton Z.F. 2005. Dynamic error correction and regulation of downstream bubble opening by human RNA polymerase II. Mol. Cell. 18, 461–470.

    Article  PubMed  CAS  Google Scholar 

  45. Burton Z.F., Feig M., Gong X.Q., Zhang C., Nedialkov Y.A., Xiong Y. 2005. NTP-driven translocation and regulation of downstream template opening by multi-subunit RNA polymerases. Biochem. Cell. Biol. 83, 486–496.

    Article  PubMed  CAS  Google Scholar 

  46. Kireeva M., Nedialkov Y.A., Gong X.Q., Zhang C., Xiong Y., Moon W., Burton Z.F., Kashlev M. 2009. Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods. 48, 333–345.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J., Palangat M., Landick R. 2010. Role of the RNA polymerase trigger loop in catalysis and pausing. Nature Struct. Mol. Biol. 17, 99–104.

    Article  CAS  Google Scholar 

  48. Svetlov V., Vassylyev D.G., Artsimovitch I. 2004. Discrimination against deoxyribonucleotide substrates by bacterial RNA polymerase. J. Biol. Chem. 279, 38087–38090.

    Article  PubMed  CAS  Google Scholar 

  49. Brueckner F., Ortiz J., Cramer P. 2009. A movie of the RNA polymerase nucleotide addition cycle. Curr. Opin. Struct. Biol. 19, 294–299.

    Article  PubMed  CAS  Google Scholar 

  50. Nudler E. 2009. RNA polymerase active center: The molecular engine of transcription. Annu. Rev. Biochem. 78, 335–361.

    Article  PubMed  CAS  Google Scholar 

  51. Svetlov V., Nudler E. 2009. Macromolecular micromovements: How RNA polymerase translocates. Curr. Opin. Struct. Biol. 19, 701–707.

    Article  PubMed  CAS  Google Scholar 

  52. Epshtein V., Mustaev A., Markovtsov V., Bereshchenko O., Nikiforov V., Goldfarb A. 2002. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol. Cell. 10, 623–634.

    Article  PubMed  CAS  Google Scholar 

  53. Bar-Nahum G., Epshtein V., Ruckenstein A.E., Rafikov R., Mustaev A., Nudler E. 2005. A ratchet mechanism of transcription elongation and its control. Cell. 120, 183–193.

    Article  PubMed  CAS  Google Scholar 

  54. Tan L., Wiesler S., Trzaska D., Carney H.C., Weinzierl R.O. 2008. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J. Biol. 7, 40.

    Article  PubMed  Google Scholar 

  55. Kireeva M.L., Nedialkov Y.A., Cremona G.H., Purtov Y.A., Lubkowska L., Malagon F., Burton Z.F., Strathern J.N., Kashlev M. 2008. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell. 30, 557–566.

    Article  PubMed  CAS  Google Scholar 

  56. Walmacq C., Kireeva M.L., Irvin J., Nedialkov Y., Lubkowska L., Malagon F., Strathern J.N., Kashlev M. 2009. Rpb9 subunit controls transcription fidelity by delaying NTP sequestration in RNA polymerase II. J. Biol. Chem. 284, 19601–19612.

    Article  PubMed  CAS  Google Scholar 

  57. Johnson R.S., Strausbauch M., Cooper R., Register J.K. 2008. Rapid kinetic analysis of transcription elongation by Escherichia coli RNA polymerase. J. Mol. Biol. 381, 1106–1113.

    Article  PubMed  CAS  Google Scholar 

  58. Nedialkov Y.A., Gong X.Q., Hovde S.L., Yamaguchi Y., Handa H., Geiger J.H., Yan H., Burton Z.F. 2003. NTP-driven translocation by human RNA polymerase II. J. Biol. Chem. 278, 18303–18312.

    Article  PubMed  CAS  Google Scholar 

  59. Blank A., Gallant J.A., Burgess R.R., Loeb L.A. 1986. An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry. 25, 5920–5928.

    Article  PubMed  CAS  Google Scholar 

  60. Rosenberger R.F., Hilton J. 1983. The frequency of transcriptional and translational errors at nonsense codons in the lacZ gene of Escherichia coli. Mol. Gen. Genet. 191, 207–212.

    Article  PubMed  CAS  Google Scholar 

  61. Scheuermann R.H., Echols H. 1984. A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. USA. 81, 7747–7751.

    Article  PubMed  CAS  Google Scholar 

  62. Derbyshire V., Freemont P.S., Sanderson M.R., Beese L., Friedman J.M., Joyce C.M., Steitz T.A. 1988. Genetic and crystallographic studies of the 3′,5′-exonucleolytic site of DNA polymerase I. Science. 240, 199–201.

    Article  PubMed  CAS  Google Scholar 

  63. Sydow J.F., Brueckner F., Cheung A.C., Damsma G.E., Dengl S., Lehmann E., Vassylyev D., Cramer P. 2009. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell. 34, 710–721.

    Article  PubMed  CAS  Google Scholar 

  64. Damsma G.E., Alt A., Brueckner F., Carell T., Cramer P. 2007. Mechanism of transcriptional stalling at cisplatindamaged DNA. Nature Struct. Mol. Biol. 14, 1127–1133.

    Article  CAS  Google Scholar 

  65. Brueckner F., Hennecke U., Carell T., Cramer P. 2007. CPD damage recognition by transcribing RNA polymerase II. Science. 315, 859–862.

    Article  PubMed  CAS  Google Scholar 

  66. Damsma G.E., Cramer P. 2009. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J. Biol. Chem. 284, 31658–31663.

    Article  PubMed  CAS  Google Scholar 

  67. Kashkina E., Anikin M., Brueckner F., Pomerantz R.T., McAllister W.T., Cramer P., Temiakov D. 2006. Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol. Cell. 24, 257–266.

    Article  PubMed  CAS  Google Scholar 

  68. Zenkin N., Yuzenkova Y., Severinov K. 2006. Transcript-assisted transcriptional proofreading. Science. 313, 518–520.

    Article  PubMed  CAS  Google Scholar 

  69. Thomas M.J., Platas A.A., Hawley D.K. 1998. Transcriptional fidelity and proofreading by RNA polymerase II. Cell. 93, 627–637.

    Article  PubMed  CAS  Google Scholar 

  70. Miropolskaya N., Artsimovitch I., Klimasauskas S., Nikiforov V., Kulbachinskiy A. 2009. Allosteric control of catalysis by the F loop of RNA polymerase. Proc. Natl. Acad. Sci. USA. 106, 18942–18947.

    Article  PubMed  Google Scholar 

  71. Tuske S., Sarafianos S.G., Wang X., Hudson B., Sineva E., Mukhopadhyay J., Birktoft J.J., Leroy O., Ismail S., Clark A.D., Jr., Dharia C., Napoli A., Laptenko O., Lee J., Borukhov S., Ebright R.H., Arnold E. 2005. Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. Cell. 122, 541–552.

    Article  PubMed  CAS  Google Scholar 

  72. Temiakov D., Zenkin N., Vassylyeva M.N., Perederina A., Tahirov T.H., Kashkina E., Savkina M., Zorov S., Nikiforov V., Igarashi N., Matsugaki N., Wakatsuki S., Severinov K., Vassylyev D.G. 2005. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol. Cell. 19, 655–666.

    Article  PubMed  CAS  Google Scholar 

  73. Pupov D.V., Barinova N.A., Kulbachinskiy A.V. 2008. Analysis of RNA cleavage by RNA polymerases of E. coli and D. radiodurans. Biokhimiya. 73, 903–908.

    Google Scholar 

  74. Bass I., Bogdanova E., Goldfarb A., Nikiforov V. 2004. Cold sensitivity of thermophilic and mesophilic RNA polymerases. J. Bacteriol. 186, 7818–7820.

    Article  PubMed  CAS  Google Scholar 

  75. Ederth J., Artsimovitch I., Isaksson L.A., Landick R. 2002. The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J. Biol. Chem. 277, 37456–37463.

    Article  PubMed  CAS  Google Scholar 

  76. Bushnell D.A., Cramer P., Kornberg R. D. 2002. Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8. Proc. Natl. Acad. Sci. USA. 99, 1218–1222.

    Article  PubMed  CAS  Google Scholar 

  77. Gong X.Q., Nedialkov Y.A., Burton Z.F. 2004. Alphaamanitin blocks translocation by human RNA polymerase II. J. Biol. Chem. 279, 27422–27427.

    Article  PubMed  CAS  Google Scholar 

  78. Artsimovitch I., Chu C., Lynch A.S., Landick R. 2003. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science. 302, 650–654.

    Article  PubMed  CAS  Google Scholar 

  79. Nickels B.E., Hochschild A. 2004. Regulation of RNA polymerase through the secondary channel. Cell. 118, 281–284.

    Article  PubMed  CAS  Google Scholar 

  80. Borukhov S., Sagitov V., Goldfarb A. 1993. Transcript cleavage factors from E. coli. Cell. 72, 459–466.

    Article  PubMed  CAS  Google Scholar 

  81. Borukhov S., Polyakov A., Nikiforov V., Goldfarb A. 1992. GreA protein: A transcription elongation factor from Escherichia coli. Proc. Natl. Acad. Sci. USA. 89, 8899–8902.

    Article  PubMed  CAS  Google Scholar 

  82. Kulish D., Lee J., Lomakin I., Nowicka B., Das A., Darst S., Normet K., Borukhov S. 2000. The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB. J. Biol. Chem. 275, 12789–12798.

    Article  PubMed  CAS  Google Scholar 

  83. Komissarova N., Kashlev M. 1997. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272, 15329–15338.

    Article  PubMed  CAS  Google Scholar 

  84. Nudler E., Mustaev A., Lukhtanov E., Goldfarb A. 1997. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell. 89, 33–41.

    Article  PubMed  CAS  Google Scholar 

  85. Marr M.T., Roberts J.W. 2000. Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol. Cell. 6, 1275–1285.

    Article  PubMed  CAS  Google Scholar 

  86. Stepanova E., Wang M., Severinov K., Borukhov S. 2009. Early transcriptional arrest at Escherichia coli rplN and ompX promoters. J. Biol. Chem. 284, 35702–35713.

    Article  PubMed  CAS  Google Scholar 

  87. Gordon A.J., Halliday J.A., Blankschien M.D., Burns P.A., Yatagai F., Herman C. 2009. Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol. 7, e44.

    Article  PubMed  CAS  Google Scholar 

  88. Sosunova E., Sosunov V., Kozlov M., Nikiforov V., Goldfarb A., Mustaev A. 2003. Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc. Natl. Acad. Sci. USA. 100, 15469–15474.

    Article  PubMed  CAS  Google Scholar 

  89. Laptenko O., Lee J., Lomakin I., Borukhov S. 2003. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322–6334.

    Article  PubMed  CAS  Google Scholar 

  90. Opalka N., Chlenov M., Chacon P., Rice W.J., Wriggers W., Darst S.A. 2003. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell. 114, 335–345.

    Article  PubMed  CAS  Google Scholar 

  91. Stebbins C.E., Borukhov S., Orlova M., Polyakov A., Goldfarb A., Darst S.A. 1995. Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature. 373, 636–640.

    Article  PubMed  CAS  Google Scholar 

  92. Vassylyeva M.N., Svetlov V., Dearborn A.D., Klyuyev S., Artsimovitch I., Vassylyev D.G. 2007. The carboxy-terminal coiled-coil of the RNA polymerase beta’-subunit is the main binding site for Gre factors. EMBO Rep. 8, 1038–1043.

    Article  PubMed  CAS  Google Scholar 

  93. Kettenberger H., Armache K.J., Cramer P. 2003. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell. 114, 347–357.

    Article  PubMed  CAS  Google Scholar 

  94. Hogan B.P., Hartsch T., Erie D.A. 2002. Transcript cleavage by Thermus thermophilus RNA polymerase. Effects of GreA and anti-GreA factors. J. Biol. Chem. 277, 967–975.

    Article  PubMed  CAS  Google Scholar 

  95. Laptenko O., Kim S.S., Lee J., Starodubtseva M., Cava F., Berenguer J., Kong X.P., Borukhov S. 2006. pH-dependent conformational switch activates the inhibitor of transcription elongation. EMBO J. 25, 2131–2141.

    Article  PubMed  CAS  Google Scholar 

  96. Symersky J., Perederina A., Vassylyeva M.N., Svetlov V., Artsimovitch I., Vassylyev D. G. 2006. Regulation through the RNA polymerase secondary channel. Structural and functional variability of the coiled-coil transcription factors. J. Biol. Chem. 281, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  97. Hogg T., Mechold U., Malke H., Cashel M., Hilgenfeld R. 2004. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response. Cell. 117, 57–68.

    Article  PubMed  CAS  Google Scholar 

  98. Artsimovitch I., Patlan V., Sekine S., Vassylyeva M.N., Hosaka T., Ochi K., Yokoyama S., Vassylyev D.G. 2004. Structural basis for transcription regulation by alarmone ppGpp. Cell. 117, 299–310.

    Article  PubMed  CAS  Google Scholar 

  99. Gourse R.L., Gaal T., Aiyar S.E., Barker M.M., Estrem S.T., Hirvonen C.A., Ross W. 1998. Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. Cold Spring Harb. Symp. Quant. Biol. 63, 131–139.

    Article  PubMed  CAS  Google Scholar 

  100. Wagner R. 2002. Regulation of ribosomal RNA synthesis in E. coli: effects of the global regulator guanosine tetraphosphate (ppGpp). J. Mol. Microbiol. Biotechnol. 4, 331–340.

    PubMed  CAS  Google Scholar 

  101. Potrykus K., Cashel M. 2008. (p)ppGpp: Still magical? Annu. Rev. Microbiol. 62, 35–51.

    Article  PubMed  CAS  Google Scholar 

  102. Paul B.J., Barker M.M., Ross W., Schneider D.A., Webb C., Foster J.W., Gourse R.L. 2004. DksA: A critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell. 118, 311–322.

    Article  PubMed  CAS  Google Scholar 

  103. Paul B.J., Berkmen M.B., Gourse R.L. 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. USA. 102, 7823–7828.

    Article  PubMed  CAS  Google Scholar 

  104. Mallik P., Paul B.J., Rutherford S.T., Gourse R.L., Osuna R. 2006. DksA is required for growth phase-dependent regulation, growth rate-dependent control, and stringent control of fis expression in Escherichia coli. J. Bacteriol. 188, 5775–5782.

    Article  PubMed  CAS  Google Scholar 

  105. Perederina A., Svetlov V., Vassylyeva M.N., Tahirov T.H., Yokoyama S., Artsimovitch I., Vassylyev D.G. 2004. Regulation through the secondary channel: Structural framework for ppGpp-DksA synergism during transcription. Cell. 118, 297–309.

    Article  PubMed  CAS  Google Scholar 

  106. Rutherford S.T., Villers C.L., Lee J.H., Ross W., Gourse R.L. 2009. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 23, 236–248.

    Article  PubMed  CAS  Google Scholar 

  107. Lyzen R., Kochanowska M., Wegrzyn G., Szalewska-Palasz A. 2009. Transcription from bacteriophage lambda pR promoter is regulated independently and antagonistically by DksA and ppGpp. Nucleic Acids Res. 37, 6655–6664.

    Article  PubMed  CAS  Google Scholar 

  108. Mathews D.E., Durbin R.D. 1990. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J. Biol. Chem. 265, 493–498.

    PubMed  CAS  Google Scholar 

  109. Vassylyev D.G., Svetlov V., Vassylyeva M.N., Perederina A., Igarashi N., Matsugaki N., Wakatsuki S., Artsimovitch I. 2005. Structural basis for transcription inhibition by tagetitoxin. Nature Struct. Mol. Biol. 12, 1086–1093.

    Article  CAS  Google Scholar 

  110. Campbell E.A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S. A. 2001. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 104, 901–912.

    Article  PubMed  CAS  Google Scholar 

  111. Artsimovitch I., Vassylyeva M.N., Svetlov D., Svetlov V., Perederina A., Igarashi N., Matsugaki N., Wakatsuki S., Tahirov T.H., Vassylyev D.G. 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell. 122, 351–363.

    Article  PubMed  CAS  Google Scholar 

  112. McClure W.R., Cech C.L. 1978. On the mechanism of rifampicin inhibition of RNA synthesis. J. Biol. Chem. 253, 8949–8956.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kulbachinskiy.

Additional information

Original Russian Text © D.V. Pupov, A.V. Kulbachinskiy, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 4, pp. 573–590.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pupov, D.V., Kulbachinskiy, A.V. Structural dynamics of the active center of multisubunit RNA polymerases during RNA synthesis and proofreading. Mol Biol 44, 503–519 (2010). https://doi.org/10.1134/S0026893310040023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310040023

Key words

Navigation