Skip to main content
Log in

Invasion of complementary oligonucleotides into (CA/TG)31 repetitive region of linear and circular DNA duplexes

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

(CA/TG)n repeats belong to microsatellite DNA. They are the most abundant among the other dinucleotide repeats in mammals, constituting approximately 0.25% of the entire genome. These repeats are recombination hot spots; however, the corresponding mechanisms are yet vague. We postulated that one of the reasons underlying an increase in the recombination frequency in the repetitive region could be the con-formational characteristics of duplex resulting from a specific geometry of base-stacking contacts, providing for initiation of a single-stranded DNA invasion in th e duplex homologous regions. This work for the first time demonstrates a DNA-DNA interaction of the d(CA)10 and d(TG)10 oligonucleotides with linear and circular duplexes containing (CA/TG)31 repeats during their coincubation in a protein-free water solution at 37°C. Using radioactively labeled oligonucleotides, we demonstrated that the duplex—oligonucleotide interaction intensity depended on the molar ratio of duplex-to-oligonucleotide at a duplex concentration of 30 nM. A decrease in this concentration to 3 nM had no effect on the intensity of oligonucleotide invasion. It was demonstrated that over 1% of the duplexes yet much less than 10% were involved in the interaction with oligonucleotides assuming that one oligonucleotide molecule interacted with one molecule of the duplex. Analysis of the kinetics showed that d(CA)10 invasion commenced from the first minute of incubation with duplexes, while d(TG)10 interacted with the duplex even at a higher rate. The role of conformational plasticity of CA/TG repeats in the discovered interaction is discussed as well as its biological significance, in particular, the role of CA microsatellites in the initiation of homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PCR:

polymerase chain reaction

NMR:

nuclear magnetic resonance

References

  1. Lander E.S., Linton L.M., Birren B., et al. 2001. Initial sequencing and analysis of the human genome. Nature. 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Treco D., Thomas B., Arnheim N. 1985. Recombination hot spot in the human beta-globin gene cluster: Meiotic recombination of human DNA fragments in Saccharomyces cerevisiae. Mol. Cell Biol. 5, 2029–2038.

    CAS  PubMed  Google Scholar 

  3. Gendrel C-G., Boulet A., Dutreix M. 2000. (CA/GT)n microsatellites affect homologous recombination during yeast meiosis. Genet. Dev. 14, 1261–1268.

    CAS  Google Scholar 

  4. Murphy K.E., Stringer R. 1986. RecA independent recombination of poly d(GT)-d(CA) in pBR322. Nucleic Acids Res. 14, 7325–7340.

    Article  CAS  PubMed  Google Scholar 

  5. Dutriex M. 1997. (GT)n repetitive tracts affect several stages of RecA-promoted recombination. J. Mol. Biol. 273, 105–113.

    Article  Google Scholar 

  6. Majewski J., Ott J. 2000. GT repeats are associated with recombination on human chromosome 22. Genet. Res. 10, 1108–1114.

    Article  CAS  Google Scholar 

  7. Adachi M., Tsujimoto Y. 1990. Potential Z-DNA elements surround the breakpoints of chromosome trans-location within the 5’ flanking region of bcl-2 gene. Oncogene. 5, 1653–1657.

    CAS  PubMed  Google Scholar 

  8. Ford A.M., Bennet C.A., Price C.M., Bruin M.C.A., van Wering E.R., Greaves M. 1998. Fetal origins of the TEL-AML fusion gene in identical twins with leukemia. Proc. Natl. Acad. Sci. USA. 95, 4584.

    Article  CAS  PubMed  Google Scholar 

  9. Thandla S.P., Ploski J.E., Razaigilmez S.Z., Chhal-liyil P.P., Block A.M.W., de Jong P.J., Aplan P.D. 1999. ETV6-AML1 translocation breakpoints cluster near a purine/pyrimidine repeat region in the ETV6 gene. Blood. 93, 293–299.

    CAS  PubMed  Google Scholar 

  10. Naylor L.H., Clark E.M. 1990. d(TG)n d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res. 18, 1595–1601.

    Article  CAS  PubMed  Google Scholar 

  11. Shimajiri S., Arima N., Tanimoto A., Murata Y., Hamada T., Wang K.Y., Sasaguri Y. 1999. Shortened microsatellite d(CA)21 sequence down-regulates promoter activity of matrix metalloproteinase 9 gene. FEBS Lett. 455, 70–74.

    Article  CAS  PubMed  Google Scholar 

  12. Hui J., Hung L.H., Heiner M., Schreiner S., Neumüller N., Reither G., Haas S.A., Bindereif A. 2005. Intronic CA-repeat and CA-rich elements: A new class of regulators of mammalian alternative splicing. EMBOJ. 24, 1988–1998.

    Article  CAS  Google Scholar 

  13. Lorenz M., Hewing B., Hui J., Zepp A., Baumann G., Bindereif A., Stangl V., Stangl K. 2007. Alternative splicing in intron 13 of the human eNOS gene: A potential mechanism for regulating eNOS activity. FASEB J. 21, 1556–1564.

    Article  CAS  PubMed  Google Scholar 

  14. Yu J., Hai Y., Liu G., Fang T., Kung S.K., Xie J. 2009. The heterogeneous nuclear ribonucleoprotein L is an essential component in the Ca2+/calmodulin-depen-dent protein kinase IV-regulated alternative splicing through cytidine-adenosine repeats. J. Biol. Chem. 284, 1505–15013.

    Article  CAS  PubMed  Google Scholar 

  15. Rossbach O., Hung L.H., Schreiner S., Grishina I., Heiner M., Hui J., Bindereif A. 2009. Auto-and cross-regulation of the hnRNP L proteins by alternative splicing. Mol. Cell. Biol. 29, 1442–1451.

    Article  CAS  PubMed  Google Scholar 

  16. Benet A., Azorin F. 1999. The formation of triple-stranded DNA prevents spontaneous branch-migra-tion. J. Mol. Biol. 294, 851–857.

    Article  CAS  PubMed  Google Scholar 

  17. Wang G., Vasquez K.M. 2004. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc. Natl. Acad. Sci. USA. 101, 13448–13453.

    Article  CAS  PubMed  Google Scholar 

  18. Wang G., Vasquez K.M. 2006. Non-B DNA structure induced genetic instability. Mutat. Res. 598, 103–119.

    CAS  PubMed  Google Scholar 

  19. Gasanova V.K., Neschastnova A.A., Belitskii G.A., Yakubovskaya M.G. 2006. Specific oligonucleotide invasion into an end of a DNA duplex. Mol. Biol. 40, 132–138.

    Article  CAS  Google Scholar 

  20. Saenger W. 1984. Principles of Nucleic Acid Structure. N.Y.: Springer.

    Google Scholar 

  21. Gaillard C., Strauss F. 1994. Association of poly(CA).poly(TG) DNA fragments into four-stranded complexes bound by HMG1 and 2. Science. 264, 433–436.

    Article  CAS  PubMed  Google Scholar 

  22. Sambrook J., Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press, vol. 1.

    Google Scholar 

  23. Yakubovskaya M. G., Neschastnova A. A., Popenko V.I., Lipatova Zh.V., Belitsky G.A. 1999. Holliday junctions are formed in concentrated solutions of purified products of DNA amplification. Biokhimiya. 64, 1550–1554.

    Google Scholar 

  24. Kaluzhny D., Shchyolkina A., Livshits M., Lysov Y., Borisova O. 2009. A novel intramolecular G-quartet-containing fold of single-stranded d(GT)(8) and d(GT)(16) oligonucleotides. Biophys. Chem. 143, 161–165.

    Article  CAS  PubMed  Google Scholar 

  25. Hite J.M., Eckert K.A., Cheng K.C. 1996. Factors affecting fidelity of DNA synthesis during PCR amplification of d(C-A)n d(G-T) n microsatellite repeats. Nucleic Acids Res. 24, 2429–2434.

    Article  CAS  PubMed  Google Scholar 

  26. Eckert K., Mowery A., Hile S. 2002. Misalignment-mediated DNA polymerase beta mutations: Comparison of microsatellite and frame-shift error rates using a forward mutation assay. Biochemistry. 41, 10490–10498.

    Article  CAS  PubMed  Google Scholar 

  27. Shinde D., Lai Y., Sun F., Arnheim N. 2003. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Res. 31, 974–980.

    Article  CAS  PubMed  Google Scholar 

  28. Debrauwere H., Gendrel C.G., Lechat S., Dutreix M. 1997. Differences and similarities between various tandem repeat sequences: Minisatellites and microsatel-lites. Biochimie. 79, 577–586.

    Article  CAS  PubMed  Google Scholar 

  29. Yakubovskaya M.G., Neschastnova A A., Humphrey K.E., et al. 2001. Interaction of linear homologous DNA duplexes via Holliday junction formation. Eur. J. Bio-chem. 268, 7–14.

    CAS  Google Scholar 

  30. Markina V.K., Danilova O.A., Neschastnova A.A., Belitskii G.A., Yakubovskaya M.G. 2002. The role of duplex ends in the spontaneous interaction of homologous linear DNA fragments. Mol. Biol. 36, 693–697.

    Article  CAS  Google Scholar 

  31. Bichara M., Pinet I., Schumacher S., Fuchs R.P. 2000. Mechanisms of dinucleotide repeat instability in Escherichia coli. Genetics. 154, 533–542.

    CAS  PubMed  Google Scholar 

  32. Gaillard C., Shlyakhtenko L.S., Lyubchenko Y.L., Strauss F. 2002. Structural analysis of hemicatenated DNA loops. BMC Struct. Biol. 2, 7.

    Article  PubMed  Google Scholar 

  33. Kladde M.R, Kohwi Y, Kohwi-Shigematsu T., Gorski J. 1994. The non-B-DNA structure of d(CA/TG)n differs from that of Z-DNA. Proc. Natl. Acad. Sci. USA. 91, 1898–1902.

    Article  CAS  PubMed  Google Scholar 

  34. Ha S.C., Lowenhaupt K., Rich A., Kim Y.G., Kim K.K. 2005. Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature. 437, 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  35. Singleton C.K., Klysik J., Stirdivant S.M., Wells R.D. 1982. Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature. 299, 312–316.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki M., Yagi N. 1995. Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res. 23, 2083–2091

    Article  CAS  PubMed  Google Scholar 

  37. Lankas F., Sponer J., Langowski J., Cheatham T.E. 3rd. 2003. DNA basepair step deformability inferred from molecular dynamics simulations. Biophys. J. 85, 2872–2883.

    Article  CAS  PubMed  Google Scholar 

  38. Cheung S., Arndt K., Lu P. 1984. Correlation of lac operator DNA imino proton exchange kinetics with its function. Proc. Natl. Acad. Sci. USA. 81, 3665–3669.

    Article  CAS  PubMed  Google Scholar 

  39. Kowalczykowski S.C., Dixon D.A., Eggleston A.K., Lauder S.D., Rehraurer W.M. 1994. Biochemistry of homologous recombination in Escherichia coli. Micro-biol.Rev. 58, 401–465.

    CAS  Google Scholar 

  40. Hunter N., Kleckner N. 2001. The single-end invasion: An asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell. 106, 59–70.

    Article  CAS  PubMed  Google Scholar 

  41. Wahls W.P. 1998. Meiotic recombination hotspots: Shaping the genome and insights into hypervariable minisatellite DNA change. Curr. Top. Dev. Biol. 37, 37–75.

    Article  CAS  PubMed  Google Scholar 

  42. Wang G., Carbajal S., Vijg J., DiGiovanni J., Vasquez K.M. 2008. DNA structure4nduced genomic instability itin vivo. J. Natl. Cancer Inst. 100, 1815–1817.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Gasanova.

Additional information

Original Russian Text © V.K. Gasanova, N V. Ryadninskaya, C. Gaillard, F. Strauss, G.A. Belitsky, M.G. Yakubovskaya, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 3, pp. 520–528.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasanova, V.K., Ryadninskaya, N.V., Gaillard, C. et al. Invasion of complementary oligonucleotides into (CA/TG)31 repetitive region of linear and circular DNA duplexes. Mol Biol 44, 458–465 (2010). https://doi.org/10.1134/S0026893310030155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893310030155

Key words

Navigation