Skip to main content
Log in

Cholesterol-modified anti-MDR1 small interfering RNA: Uptake and biological activity

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Small interfering RNAs (siRNA) are considered to be potential agents for specific gene silencing, but low the efficacy of siRNA delivery into cells limits their biomedical application. Accumulation of siRNA coupled with cholesterol residue at the 5′-end of the “sense” strand (chol-siRNA) was studied in HEK293, HepG2, SC1, and KB-8-5 cells. In the absence of a transfection agent, the levels of both carrier-free and chol-siRNAs were very low, whereas transfection agent substantially increased transfection rate in all cell lines; in HEK293, SC1, and KB-8-5 cells transfection efficiency of the chol-siRNA was higher than that of the corresponding unmodified siRNA. Biological activity of anti-MDR1-siRNAs targeted to the 557–577 nt region of the MDR1 gene mRNA was estimated as multiple drug resistance phenotype reverting activity of KB-8-5 cancer cells. The chol-siRNA induced cancer cells’ death in the presence of previously tolerated vinblastine doses more effectively than unmodified siRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

2′-O-methyl-cytosine

U :

2′-O-methyl-uridine

chol:

cholesterol residue

siRNA:

small interfering RNA

LDL:

low-density lipoproteins

MDR:

multiple drug resistance

MTT:

3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide

FBS:

fetal bovine serum

References

  1. Aigner A. 2006. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct application of siRNAs. J. Biotechnol. 124, 12–25.

    Article  CAS  PubMed  Google Scholar 

  2. Manche L., Green S.R., Schmedt C., Mathews M.B. 1992. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell Biol. 12, 5238–5248.

    CAS  PubMed  Google Scholar 

  3. Minks M.A., West D.K., Benvin S., Baglioni C. 1979. Structural requirements of double-stranded RNA for the activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 254, 10180–10183.

    CAS  PubMed  Google Scholar 

  4. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  5. Corey D.R. 2007. Chemical modification: The key to clinical application of RNA interference? J. Clin. Invest. 117, 3615–3622.

    Article  CAS  PubMed  Google Scholar 

  6. De Paula D., Bentley M.V., Mahato R.I. 2007. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA. 13, 431–456.

    Article  PubMed  Google Scholar 

  7. Manoharan M. 2004. RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 8, 570–579.

    Article  CAS  PubMed  Google Scholar 

  8. Elbashir S.M., Martinez J., Patkaniowska A., Lendeckel W., Tuschl T. 2001. Functional anatomy of siR-NAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888.

    Article  CAS  PubMed  Google Scholar 

  9. Volkov A.A., Kruglova N.S., Meschaninova M.I., Venyaminova A.G., Zenkova M.A., Vlassov V.V., Chernolovskaya E.L. 2009. Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. Oligonucleotides. 19, 191–202.

    Article  CAS  PubMed  Google Scholar 

  10. Lorenz C., Hadwiger P., John M., Vornlocher H.P., Unverzagt C. 2004. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett. 14, 4975–4977.

    Article  CAS  PubMed  Google Scholar 

  11. Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Rohl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H.P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 432, 173–178.

    Article  CAS  PubMed  Google Scholar 

  12. Scotto K.W. 2003. Transcriptional regulation of ABC drug transporters. Oncogene. 22, 7496–7511.

    Article  CAS  PubMed  Google Scholar 

  13. Chen L.M., Liang Y.J., Ruan J.W., Ding Y., Wang X.W., Shi Z., Gu L.Q., Yang X.P., Fu L.W. 2004. Reversal of P-gp mediated multidrug resistance in-vitro and in-vivo by FG020318. J. Pharm. Pharmacol. 56, 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  14. Logashenko E.B., Vladimirova A.V., Volkov A.A. 2006. Suppression of MDR1 gene expression by chemically modified siRNAs. Russ. Chem. Bull., Int. Edition. 55, 1275–1283.

    Article  CAS  Google Scholar 

  15. Novopashina D.S., Sinyakov A.N., Ryabinin V.A., Venyaminova A.G., Halby L., Sun J.S., Boutorine A.S. 2005. Sequence-specific conjugates of oligo(2′-O-methylribonucleotides) and hairpin oligocarboxamide minor-groove binders: Design, synthesis, and binding studies with double-stranded DNA. Chem. Biodivers. 2, 936–952.

    Article  CAS  PubMed  Google Scholar 

  16. Pyshnyi D.V., Pyshnaya I.A., Lokhov S.G., Ivanova E.M., Zarytova V.F. 1995. Interaction of short oligonucleotide derivatives with nucleic acids: 1. The effects of various effectors on alkylation of DNA targets. Bioorg. Khim. 21, 709–716.

    CAS  PubMed  Google Scholar 

  17. Proudnikov D., Mirzabekov A. 1996. Chemical methods of DNA and RNA fluorescent labeling. Nucleic Acids Res. 24, 4535–4542.

    Article  CAS  PubMed  Google Scholar 

  18. Carmichael J., DeGraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 47, 936–942.

    CAS  PubMed  Google Scholar 

  19. Logashenko E.B., Vladimirova A.V., Repkova M.N., Venyaminova A.G., Chernolovskaya E.L., Vlassov V.V. 2004. Silencing of MDR1 gene in cancer cells by siRNA. Nucleosides Nucleotides Nucleic Acids. 23, 861–866.

    Article  CAS  PubMed  Google Scholar 

  20. Havekes L.M., De Wit E.C., Princen H.M. 1987. Cellular free cholesterol in Hep G2 cells is only partially available for down-regulation of low-density-lipoprotein receptor activity. Biochem J. 247, 739–746.

    CAS  PubMed  Google Scholar 

  21. Hayashi K., Nimpf J., Schneider W.J. 1989. Chicken oocytes and fibroblasts express different apolipoprotein-B-specific receptors. J. Biol. Chem. 264, 3131–3139.

    CAS  PubMed  Google Scholar 

  22. Kambouris A.M., Roach P.D., Calvert G.D., Nestel P.J. 1990. Retroendocytosis of high density lipoproteins by the human hepatoma cell line, HepG2. Arteriosclerosis. 10, 582–590.

    CAS  PubMed  Google Scholar 

  23. Neufeld E.F., Fratantoni J.C. 1970. Inborn errors of mucopolysaccharide metabolism. Science. 169, 141–146.

    Article  CAS  PubMed  Google Scholar 

  24. Marsche G., Frank S., Raynes J.G., Kozarsky K.F., Sattler W., Malle E. 2007. The lipidation status of acute-phase protein serum amyloid A determines cholesterol mobilization via scavenger receptor class B, type I. Biochem J. 402, 117–124.

    Article  CAS  PubMed  Google Scholar 

  25. Celis J.E. 2006. Cell Biology: A Laboratory Handbook, 3rd ed. Elsevier, vol. 1.

  26. Cohen D., Yang C.P., Horwitz S.B. 1990. The products of the mdr1a and mdr1b genes from multidrug resistant murine cells have similar degradation rates. Life Sci. 46, 489–495.

    Article  CAS  PubMed  Google Scholar 

  27. Richert N.D., Aldwin L., Nitecki D., Gottesman M.M., Pastan I. 1988. Stability and covalent modification of P-glycoprotein in multidrug-resistant KB cells. Biochemistry. 27, 7607–7613.

    Article  CAS  PubMed  Google Scholar 

  28. Kabilova T.O., Chernolovskaya E.L., Vlassov V.V. 2006. Inhibition of human carcinoma and neuroblastoma cell proliferation by anti-c-myc siRNA. Oligonucleotides. 16, 15–25.

    Article  CAS  PubMed  Google Scholar 

  29. Chiu Y.L., Rana T.M. 2003. siRNA function in RNAi: A chemical modification analysis. RNA. 9, 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  30. Brown M.S., Goldstein J.L. 1997. The SREBP path-way: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89, 331–340.

    Article  CAS  PubMed  Google Scholar 

  31. Plosch T., Kosters A., Groen A.K., Kuipers F. 2005. The ABC of hepatic and intestinal cholesterol transport. Handb. Exp. Pharmacol. 168, 465–482.

    Article  Google Scholar 

  32. Burnett J.R., Barrett P.H. 2002. Apolipoprotein B metabolism: Tracer kinetics, models, and metabolic studies. Crit. Rev. Clin. Lab. Sci. 39, 89–137.

    Article  CAS  PubMed  Google Scholar 

  33. Deckelbaum R.J., Shipley G.G., Small D.M. 1977. Structure and interactions of lipids in human plasma low density lipoproteins. J. Biol. Chem. 252, 744–754.

    CAS  PubMed  Google Scholar 

  34. Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G.J., Giese K., Kaufmann J. 2003. Structural variations and stabilizing modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716.

    Article  CAS  PubMed  Google Scholar 

  35. Judge A.D., Bola G., Lee A.C., MacLachlan I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505.

    Article  CAS  PubMed  Google Scholar 

  36. Erbacher P., Bettinger T., Belguise-Valladier P., Zou S., Coll J.L., Behr J.P., Remy J.S. 1999. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J. Gene Med. 1, 210–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Chernolovskaya.

Additional information

Original Russian Text © N.S. Kruglova, M.I. Meschaninova, A.G. Venyaminova, M.A. Zenkova, V.V. Vlassov, E.L. Chernolovskaya, 2010, published in Molekulyarnaya Biologiya, 2010, Vol. 44, No. 2, pp. 284–293.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglova, N.S., Meschaninova, M.I., Venyaminova, A.G. et al. Cholesterol-modified anti-MDR1 small interfering RNA: Uptake and biological activity. Mol Biol 44, 254–261 (2010). https://doi.org/10.1134/S002689331002010X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689331002010X

Key words

Navigation