Skip to main content
Log in

Compute simulation to characterize structure and function of chalcone synthase from Scutellaria baicalensis georgi

  • Mathematical and Systemic Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Prediction and analysis of molecular structure and biochemical function are of theoretical guiding significance for gene discovery and application, and considered as one of the central problem of computational biology. Here, some characteristic features of chalcone synthase (CHS) family from Scutellaria baicalensis were described via bioinformatic analysis, and showed as following: the nucleic acid sequences and amino acid sequences of three chs member genes shared high similarity in the molecular structures and physicochemical properties; SbCHS proteins were localized to the cytosol, and possessed a good hydrophobic nature, with lacking any transmembrane topological structure. The phylogram analysis suggested that they were a group genes with significant functional association and genetic conservation. The secondary structures of the SbCHSs were mainly composed of α-helixes and random coils, and the tertiary structures contained malonyl CoA linkers, besides, each of CHS-A and CHS-B with N-glycosylation motif included. Taken together, these results demonstrate that CHS family from S. baicalensis has the typical molecular structure and function of chalcone synthase, compared with the experimental data for Medicago sativa CHS protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stefan M., Axel M. 2005. Flavones and flavone synthases. Phytochemistry. 66, 2399–2407.

    Article  Google Scholar 

  2. McKhann H.I., Hirsch A.M. 1994. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): Highest transcript levels occur in young roots and root tips. Plant Mol. Biol. 5, 767–777.

    Article  Google Scholar 

  3. Junghans H., Dalkin K., Dixon R.A. 1993. Stress responses in alfalfa ( Medicago sativa L.): 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol. Biol. 2, 239–253.

    Article  Google Scholar 

  4. Jez J.M., Noel J.P. 2000. Mechanism of chalcone synthase: PKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. Biol. Chem. 275, 39640–39643.

    Article  CAS  Google Scholar 

  5. Ferrer J.L., Jez J.M., Bowman M.E., Dixon R.A., Noel J.P. 1999. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature. 8, 775–840.

    Google Scholar 

  6. Zhang D.Q., Tan X.F., Wang X.H. 2007. Gene characteristics and transgenic application of chalcone synthase and chalcone isomerase. J. Central South Univer. Forestry Technol. 2, 87–91.

    Google Scholar 

  7. Yamamoto H. 1991. In: Biotechnology in Agriculture and Forestry: Medicinal and Aromatic Plants III. Ed. Bajaj Y.P.S. Berlin: Springer, vol. 15, pp. 398–418.

    Google Scholar 

  8. http://www.cad100.net/860_Vector-NTI-Advance-10-3.html

  9. Olof E., Henrik N., Soren B. Gunnar H. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016.

    Article  Google Scholar 

  10. Jensen J.L., Gupta R., Blom N., Devos D., Tamames J., Kesmir C., Nielsen H., Staerfeldt H., Rapacki K., Workman C. 2002. Ab initio prediction of human orphan protein function from post-translational modifications and localization features. J. Mol. Biol. 319, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen J.L., Sterfeldt H.H., Brunak S. 2003. Prediction of human protein function according to gene ontology categories. Bioinformatics. 19, 635–642.

    Article  CAS  PubMed  Google Scholar 

  12. Ikeda M., Arai M., Lao D.M. 2002. Transmembrane topology prediction methods: A reassessment and improvement by a consensus method using a dataset of experimentally characterized transmembrance topologies. In Silico Biol. 2, 19–33.

    PubMed  Google Scholar 

  13. Kyte J., Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.

    Article  CAS  PubMed  Google Scholar 

  14. Combet C., Blanchet C., Geourjon C., Deléage G. 2000. NPS: Network protein sequence analysis. Trends Biochem. Sci. 25, 147–150.

    Article  CAS  PubMed  Google Scholar 

  15. Marchler B.A., Bryant S.H. 2004. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 32, w327–w331.

    Article  Google Scholar 

  16. Thompson J.D., Gibson T.J., Plewniaki F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  17. Saito N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    Google Scholar 

  18. Kumar S.K., Tmamura K., Jakobseni I.B., Nei M. 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics. 17, 1244–1245.

    Article  CAS  PubMed  Google Scholar 

  19. Felsenstein J. 1989. PHYL IP-Phylogeny Inference Package (Version 3.2). Cladistics. 5, 164–166.

    Google Scholar 

  20. Guex N., Peitsch M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  21. Schwede T., Kopp J., Guex N., Peitsch M.C. 2003. SWISS-MODEL: An automated protein homologymodeling server. Nucleic Acids Res. 31, 3381–3385.

    Article  CAS  PubMed  Google Scholar 

  22. Arnold K., Bordoli L., Kopp J., Schwede T. 2006. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 22, 195–201.

    Article  CAS  PubMed  Google Scholar 

  23. WebLab ViewerLite, version 4.2. 2000. Molecular Simulations, Inc. San Diego, CA.

  24. Hrazdina G. 1992. Compartmentation in aromatic metabolism, In: Recent Advances in Phytochemistry. Eds Stafford H.A., Ibrahim R.K. N.Y.: Plenum, pp. 1–23.

    Google Scholar 

  25. Saslowsky D., Winkel S.B. 2001. Localization of flavonoid enzymes in Arabidopsis roots. Plant J. 27, 37–48.

    Article  CAS  PubMed  Google Scholar 

  26. Stafford H.A. 1991. Flavonoid evolution: An enzymic approach. Plant Physiol. 96, 680–685.

    Article  CAS  PubMed  Google Scholar 

  27. Jez J.M., Bowman M.E., Noel J.P. 2002. Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc. Natl. Acad. Sci. USA. 99, 5319–5324.

    Article  CAS  PubMed  Google Scholar 

  28. Kim S.H., Mizuno K., Fujimura T. 2002. Regulated expression of ADP-glucose pyrophosphorylase and chalcone synthase during root development in sweet potato. Plant Growth Regulation. 38, 173–179.

    Article  CAS  Google Scholar 

  29. Jiang M., Cao J.S. 2007. Chalcone synthase gene. Chinese J. Cell Biol. 29, 525–529.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lei.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, W., Sun, M., Luo, K.M. et al. Compute simulation to characterize structure and function of chalcone synthase from Scutellaria baicalensis georgi. Mol Biol 43, 1008–1013 (2009). https://doi.org/10.1134/S0026893309060144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309060144

Key words

Navigation