Skip to main content
Log in

Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The review considers the phylogeny and evolution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), which is the key enzyme of the autotrophic Calvin-Benson cycle and the most abundant protein on Earth. RuBisCO occurs in several structural and functional forms, including fully functional forms I, II, and III, which catalyze carboxylation/oxygenation of ribulose 1,5-bisphosphate, and RuBisCO-like form IV, which lacks carboxylating activity. The genomic localization, operon structure, and copy number of the RuBisCO genes vary among different autotrophic organisms. The RuBisCO gene phylogeny substantially differs from the phylogeny of other conserved genes, including the 16S rRNA gene. The difference is due to duplication/deletion and horizontal gene transfer events that were common in the evolution of autotrophic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondratieva E.N. 1996. Avtotrofnye prokarioty (Autotrophic Prokaryotes). Moscow: Mosk. Gos. Univ.

    Google Scholar 

  2. Berg I.A., Kockelkorn D., Buckel W., Fuchs G. 2007. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science. 318, 1782–1786.

    Article  PubMed  CAS  Google Scholar 

  3. Bassham J.A., Calvin M. 1957. The Path of Carbon in Photosynthesis. Englewood Cliffs, NJ: Prentis Hall.

    Google Scholar 

  4. Bowes G., Ogren W.L., Hagerman R.H. 1971. Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45, 716–722.

    Article  PubMed  CAS  Google Scholar 

  5. Ellis R.J. 1979. The most abundant protein in the world. Trends Biochem. Sci. 4, 241–244.

    Article  CAS  Google Scholar 

  6. Tabita F.R. 1999. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: A different perspective. Photosynth. Res. 60, 1–28.

    Article  CAS  Google Scholar 

  7. Hanson T.E., Tabita F.R. 2001. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and response to oxidative stress. Proc. Natl. Acad. Sci. USA. 98, 4397–4402.

    Article  PubMed  CAS  Google Scholar 

  8. Tabita F.R. 1988. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52, 155–189.

    PubMed  CAS  Google Scholar 

  9. Kellogg E.A., Juliano N.D. 1997.The structure and function of RuBisCO and their implications for systematic studies. Am. J. Bot. 84, 413–428.

    Article  CAS  Google Scholar 

  10. Hansen S., Vollan V.B., Hough E., Andersen K. 1999. The crystal structure of Rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded beta-barrel formed by beta-strands from four subunits. J. Mol. Biol. 288, 609–621.

    Article  PubMed  CAS  Google Scholar 

  11. Tabita F.R. 1995. The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In: Anoxygenic Photosynthetic Bacteria. Eds. Blankenship R.E. et al. Dordrecht: Kluwer, pp. 885–914.

    Google Scholar 

  12. Watson G.M.F., Tabita F.R. 1997. Microbial ribulose 1.5-bisphosphate carboxylase/oxygenase: A molecule for phylogenetic and enzymological investigation. FEMS Microbiol. Lett. 146, 13–22.

    Article  PubMed  CAS  Google Scholar 

  13. Delwiche C.F., Palmer J.D. 1996. Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13, 873–882.

    PubMed  CAS  Google Scholar 

  14. Shimada A., Kanai S., Maruyama T. 1995. Partial sequence of ribulose-1.5-bisphosphate carboxylase/oxygenase and the phylogeny of Prochloron and Prochlorococcus (Prochlorales). J. Mol. Evol. 40, 671–677.

    Article  PubMed  CAS  Google Scholar 

  15. Watson G.M.F., Tabita F.R. 1996. Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium. Plant Mol. Biol. 32, 1103–1115.

    Article  PubMed  CAS  Google Scholar 

  16. McFadden B.A. 1978. Assimilation of One-Carbon Compounds. N.Y., London: Acad. Press.

    Google Scholar 

  17. Jordan D.B., Ogren W.L. 1981. Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature. 291, 513–515.

    Article  CAS  Google Scholar 

  18. Shively J.M., van Keulen G., Meijer W.G. 1998. Something from almost nothing: Carbon dioxide fixation in chemoautotrophs. Annu. Rev. Microbiol. 52, 191–230.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider G., Lindqvist Y., Lundqvist T. 1990. Crystallographic refinement and structure of ribulose-1.5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J. Mol. Biol. 211, 989–1008.

    Article  PubMed  CAS  Google Scholar 

  20. Tabita F.R., McFadden B.A. 1974. D-Ribulose 1.5-disphosphate carboxylase from Rhodospirillum rubrum. J. Biol. Chem. 249, 3459–3464.

    PubMed  CAS  Google Scholar 

  21. Gibson J.L., Tabita F.R. 1977. Different molecular forms of D-ribulose-1,5-bisphosphate carboxylase from Rhodopseudomonas sphaeroides. J. Biol. Chem. 252, 943–949.

    PubMed  CAS  Google Scholar 

  22. Gibson J.L., Tabita F.R. 1977. Isolation and preliminary characterization of two forms of ribulose 1.5-bisphosphate carboxylase from Rhodopseudomonas capsulata. J. Bacteriol. 132, 818–823.

    PubMed  CAS  Google Scholar 

  23. Robinson J.J., Polz M.F., Fiala-Medioni A., Cavanaugh C.M. 1998. Physiological and immunological evidence for two distinct C1-utilizing pathways in Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), a dual endosymbiotic mussel from Mid-Atlantic Ridge. Marine Biol. 132, 625–633.

    Article  CAS  Google Scholar 

  24. Yaguchi T., Chung S.Y., Igarashi Y., Kodama T. 1994. Cloning and sequencing of the L2 form of RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. Biosci. Biotechnol. Biochem. 58, 1733–1737.

    Article  PubMed  CAS  Google Scholar 

  25. Stoner M.T., Shively J.M. 1993. Cloning and expression of the D-ribulose-1,5-bisphosphate carboxylase/oxygenase form II gene from Thiobacillus intermedius in Escherichia coli. FEMS Microbiol. Lett. 107, 287–292.

    PubMed  CAS  Google Scholar 

  26. English R.S., Williams C.A., Lorbach S.C., Shively J.M. 1992. Two forms of ribulose-1.5-bisphosphate carboxylase/oxygenase from Thiobacillus denitrificans. FEMS Microbiol. Lett. 94, 111–119.

    Article  CAS  Google Scholar 

  27. Baker S.H., Jin S., Aldrich H.C., Howard G.T., Shively J.M. 1998. Insertion mutation of the form I cbbL gene encoding ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in Thiobacillus neapolitanus results in expression of form II RuBisCO, loss of carboxysomes, and an increased CO2 requirement for growth. J. Bacteriol. 180, 4133–4139.

    PubMed  CAS  Google Scholar 

  28. Bazylinski D.A., Dean A.J., Williams T.J., Long L.K., Middleton S.L., Dubbels B.L. 2004. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch. Microbiol. 182, 373–387.

    Article  PubMed  CAS  Google Scholar 

  29. Morse D., Salois P., Markovic P., Hastings J.W. 1995. A nuclear-encoded form II RuBisCO in dinoflagellates. Science. 268, 1622–1624.

    Article  PubMed  CAS  Google Scholar 

  30. Hernandez J.M., Baker S.H., Lorbach S.C., Shively J.M., Tabita F.R. 1996. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J. Bacteriol. 178, 347–356.

    PubMed  CAS  Google Scholar 

  31. McFadden B.A. 1973. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. Bacteriol. Rev. 37, 289–319, 289–319.

    PubMed  CAS  Google Scholar 

  32. Shively J.M., Devore W., Stratford L., Porter L., Medlin L., Stevens S.E. 1986. Molecular evolution of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). FEMS Microbiol. Lett. 37, 251–257.

    Article  CAS  Google Scholar 

  33. Rajagopalan R., Altekar W. 1994. Characterisation and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei. Eur. J. Biochem. 221, 863–869.

    Article  PubMed  CAS  Google Scholar 

  34. Hugler M., Huber H., Stetter K. O., Fuchs G. 2003. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch. Microbiol. 179, 160–173.

    PubMed  Google Scholar 

  35. Ezaki S., Maeda N., Kishimoto T., Atomi H., Imanaka T. 1999. Presence of structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J. Biol. Chem. 274, 5078–5082.

    Article  PubMed  CAS  Google Scholar 

  36. Watson G.M.F., Yu J.P., Tabita F.R. 1999. Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic archaea. J. Bacteriol. 181, 1569–1575.

    PubMed  CAS  Google Scholar 

  37. Finn M.W., Tabita F.R. 2003. Synthesis of catalytically active form III ribulose 1.5-bisphosphate carboxylase/oxygenase in archaea. J. Bacteriol. 185, 3049–3059.

    Article  PubMed  CAS  Google Scholar 

  38. Maeda N., Kitano K., Fukui T., Ezaki S., Atomi H., Miki K., Imanaka T. 1999. Ribulose bisphosphate carboxylase/oxygenase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure. J. Mol. Biol. 293, 57–66.

    Article  PubMed  CAS  Google Scholar 

  39. Maeda N., Kanai T., Atomi H., Imanaka T. 2002. The unique pentagonal structure of an archaeal Rubisco is essentional for its high thermostability. J. Biol. Chem. 277, 31656–31662.

    Article  PubMed  CAS  Google Scholar 

  40. Finn M.W., Tabita F.R. 2004. Modified pathway to synthesize ribulose 1.5-bisphosphate in methanogenic archaea. J. Bacteriol. 186, 6360–6366.

    Article  PubMed  CAS  Google Scholar 

  41. Hanson T.E., Tabita F.R. 2003. Insights into the stress response and sulfur metabolism revealed by proteome analysis of a Chlorobium tepidum mutant lacking the Rubisco-like protein. Photosynth. Res. 78, 231–248.

    Article  PubMed  CAS  Google Scholar 

  42. Li H., Sawaya M.R., Tabita F.R., Eisenberg D. 2005. Crystal structure of a RuBisCO-like protein from the green sulfur bacterium Chlorobium tepidum. Structure. 13, 779–789.

    Article  PubMed  CAS  Google Scholar 

  43. Sekowska A., Danchin A. 2002. The methionine salvage pathway in Bacillus subtilis. BMC Microbiology. 2, 8–21.

    Article  PubMed  Google Scholar 

  44. Ashida H., Saito Y., Kojima C., Kobayashi K., Ogasawara N., Yokota A. 2003. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science. 302, 286–290.

    Article  PubMed  CAS  Google Scholar 

  45. Gupta R.S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491.

    PubMed  CAS  Google Scholar 

  46. Gupta R.S., Mukhtar T., Singh B. 1999. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum, and proteobacteria): implications regarding the origin of photosynthesis. Mol. Microbiol. 32, 893–906.

    Article  PubMed  CAS  Google Scholar 

  47. Moszer I., Rocha E.P., Danchin A. 1999. Codon usage and lateral gene transfer in Bacillus subtilis. Curr. Opin. Microbiol. 2, 524–528.

    Article  PubMed  CAS  Google Scholar 

  48. Ashida H., Danchin A., Yokota A. 2005. Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res. Microbiol. 156, 611–618.

    Article  PubMed  CAS  Google Scholar 

  49. Tabita F.R., Gibson J.L., Bowien B., Dijkhuizen L., Meijer W.G. 1992. Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol. Lett. 78, 107–110.

    Article  PubMed  CAS  Google Scholar 

  50. Husemann M., Klintworth R., Buttcher V., Salnikow J., Weissenborn C., Bowien B. 1988. Chromosomally and plasmid-encoded gene clusters for CO2 fixation (cfx genes) in Alcaligenes eutrophus. Mol. Gen. Genet. 214, 112–120.

    Article  CAS  Google Scholar 

  51. Kusian B., Bednarski R., Husemann M., Bowien B. 1995. Characterization of the duplicate ribulose-1.5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J. Bacteriol. 177, 4442–4450.

    PubMed  CAS  Google Scholar 

  52. Kusian B., Bowien B. 1997. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol. Rev. 21, 135–155.

    Article  PubMed  CAS  Google Scholar 

  53. Harris S., Ebert A., Schutze E., Diercks M., Bock E., Shively J.M. 1988. Two different genes and gene products for the large subunit of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBisCOase) in Nitrobacter hamburgensis. FEMS Microbiol. Lett. 49, 267–271.

    Article  CAS  Google Scholar 

  54. Kalkus J., Ren M., Schlegel H.G. 1990. Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J. Gen. Microbiol. 136, 1145–1151.

    PubMed  CAS  Google Scholar 

  55. McClung C.R., Chelm B.K. 1987. A genetic locus essential for formate-dependent growth of Bradyrhizobium japonicum. J. Bacteriol. 169, 3260–3267.

    PubMed  CAS  Google Scholar 

  56. Pulgar V., Gaete L., Allende J., Orellana O., Jordana X., Jedlicki E. 1991. Isolation and nucleotide sequence of the Thiobacillus ferrooxidans genes for the small and large subunits of ribulose 1.5-bisphosphate carboxylase/oxygenase. FEBS Letters. 292, 85–89.

    Article  PubMed  CAS  Google Scholar 

  57. Kobayashi H., Viale A.M., Takabe T., Akazawa T., Wada K., Shinozaki K., Kobayashi K., Sugiura M. 1991. Sequence and expression of genes encoding the large and small subunits of ribulose 1.5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene. 97, 55–62.

    Article  PubMed  CAS  Google Scholar 

  58. Tourova T.P., Keppen O.I., Kovaleva O.L., Slobodova N.V., Berg I.A., Ivanovsky R.N. 2009. Phylogenetic characterization of the purple sulfur bacterium Thiocapsa sp. BBS by analysis of the 16S rRNA, cbbL, and nifH genes and its description as Thiocapsa bogorovii sp. nov., a new species. Mikrobiologiya. 78, 1–12.

    Google Scholar 

  59. Uchino Y., Yokota A. 2003. “Green-like” and “red-like” RubisCO cbbL genes in Rhodobacter azotoformans. Mol. Biol. Evol. 20, 821–830.

    Article  PubMed  CAS  Google Scholar 

  60. Gibson J.L., Falcone D.L., Tabita F.R. 1991. Nucleotide sequence, transcriptional analysis, and expression of genes encoded within form I CO2 fixation operon of Rhodobacter sphaeroides. J. Biol. Chem. 266, 14 646–14653.

    CAS  Google Scholar 

  61. Horken K.M., Tabita F.R. 1999. The “green” form I ribulose 1.5-bisphosphate carboxylase/oxygenase from nonsulfur purple bacterium Rhodobacter capsulatus. J. Bacteriol. 181, 3935–3941.

    PubMed  CAS  Google Scholar 

  62. Paoli G.C., Morgan N.S., Tabita F.R., Shively J.M. 1995. Expression of the cbbL, cbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Arch. Microbiol. 164, 396–405.

    PubMed  CAS  Google Scholar 

  63. Paoli G.C., Vichivanives P., Tabita F.R. 1998. Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J. Bacteriol. 180, 4258–4269.

    PubMed  CAS  Google Scholar 

  64. Jouanneau Y., Tabita F.R. 1986. Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides. J. Bacteriol. 165, 620–624.

    PubMed  CAS  Google Scholar 

  65. Imhoff J.F., Truper H.G., Pfennig N. 1984. Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int. J. Syst. Bacteriol. 34, 340–343.

    Google Scholar 

  66. Woese C.R., Stackebrandt E., Weisburg W.G., Paster B.J., Madigan M.T., Fowler V.J., Hahn C.M., Blanz P., Gupta R., Nealson K.H., Fox G.E. 1984. The phylogeny of purple bacteria: The alpha subdivision. Syst. Appl. Microbiol. 5, 315–326.

    PubMed  CAS  Google Scholar 

  67. Paoli G.C., Soyer F., Shively J.M., Tabita F.R. 1998. Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. Microbiology. 144, 219–227.

    Article  PubMed  CAS  Google Scholar 

  68. Nishihara H., Yaguchi T., Chung S. Y., Suzuki K., Yanagi M., Yamasato K., Kodama T., Igarashi Y. 1998. Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RuBisCO gene sequences. Arch. Microbiol. 169, 364–368.

    Article  PubMed  CAS  Google Scholar 

  69. Yoshizawa Y., Toyoda K., Arai H., Ishii M., Igarashi Y. 2004. CO2 — responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J. Bacteriol. 186, 5685–5691.

    Article  PubMed  CAS  Google Scholar 

  70. Tourova T.P., Spiridonova E.M., Berg I.A., Kuznetsov B.B., Sorokin D.Yu. 2006. Occurrence, phylogeny and evolution of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in obligately chemolithoautotrophic sulfur-oxidizing bacteria of the genera Thiomicrospira and Thioalkalimicrobium. Microbiology (UK). 52, 2159–2169.

    Article  CAS  Google Scholar 

  71. Douglas S.E., Murphy C.A. 1994. Structural, transcriptional and phylogenetic analyses of the atpB gene cluster from the plastid of Cryptomonas (Cryptophyceae). J. Phycol. 30, 329–340.

    Article  CAS  Google Scholar 

  72. Bhattacharya D., Medlin L. 1995. The phylogeny of plastids: A review based on comparisons of small-subunit ribosomal RNA coding regions. J. Phycol. 31, 489–498.

    Article  CAS  Google Scholar 

  73. Delwiche C.F., Kuhsel M., Palmer J.D. 1995. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol. Phylogenet. Evol. 4, 110–128.

    Article  PubMed  CAS  Google Scholar 

  74. De Rijk P., van de Peer Y., van den Broeck I., De Wachter R. 1995. Evolution according to large ribosomal subunit RNA. J. Mol. Evol. 41, 366–375.

    Article  PubMed  Google Scholar 

  75. Palenik B., Swift H. 1996. Cyanobacterial evolution and prochlorophyte diversity as seen in DNA-dependent RNA polymerase gene sequences. J. Phycol. 32, 638–646.

    Article  CAS  Google Scholar 

  76. French J.C., Chung M.G., Hur Y.K. 1995. Chloroplast DNA phylogeny of the Ariflorae. In: Monocotyledons: Systematics and Evolution. Eds. Rudall P.J. et al. Kew: Royal Botanic Gardens, pp. 255–275.

    Google Scholar 

  77. Tourova T.P., Spiridonova E.M., Berg I.A., Kuznetsov B.B., Sorokin D.Yu. 2005. Phylogeny of ribulose-1,5-bisphosphate carboxylase/oxygenase genes in haloalkaliphilic obligately autotrophic sulfur-oxidizing bacteria of the genus Thioalkalivibrio. Mikrobiologiya. 74, 378–386.

    Google Scholar 

  78. Tourova T.P., Spiridonova E.M., Berg I.A., Slobodova N.V., Boulygina E.S., Sorokin D.Y. 2007. Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL, and nifH gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2387–2398.

    Article  PubMed  CAS  Google Scholar 

  79. Sorokin D.Yu., Lysenko A.M., Mityushina L.L., Tourova T.P., Jones B.E., Rainey F.A., Robertson L.A., Kuenen G.J. 2001. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int. J. Syst. Evol. Microbiol. 51, 565–580.

    PubMed  CAS  Google Scholar 

  80. Sorokin D.Y., Tourova T.P., Lysenko A.M., Mityushina L.L., Kuenen J.G. 2002. Thioalkalivibrio thiocyanooxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfuroxidizing bacteria from the soda lakes able to grow with thiocyanate. Int. J. Syst. Evol. Microbiol. 52, 657–664.

    PubMed  CAS  Google Scholar 

  81. Dul’tseva N.M., Tourova T.P., Spiridonova E.M., Kolganova T.V., Osipov G.A., Gorlenko V.M., 2006. Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia. Mikrobiologiya. 75, 670–681.

    Google Scholar 

  82. Kusano T., Takeshima T., Inoue C., Sugawara K. 1991. Evidence for two sets of structural genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J. Bacteriol. 173, 7313–7323.

    PubMed  CAS  Google Scholar 

  83. Heinhorst S., Baker S.H., Johnson D.R., Davies P.S., Cannon G.C., Shively J.M. 2002. Two copies of form I RuBisCO genes in Acidithiobacillus ferrooxidans ATCC 23270. Curr. Microbiol. 45, 115–117.

    Article  PubMed  CAS  Google Scholar 

  84. Martin W., Brinkmann H., Savonna C., Cerff R. 1993. Evidence for a chimeric nature of nuclear genomes: Eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc. Natl. Acad. Sci. USA. 90, 8692–8696.

    Article  PubMed  CAS  Google Scholar 

  85. Viale A.M., Arakaki A.K., Soncini F.C., Ferreyra R.G. 1994. Evolutionary relationships among eubacterial groups as inferred from GroEL (chaperonin) sequence comparisons. Int. J. Syst. Bacteriol. 44, 527–533.

    PubMed  CAS  Google Scholar 

  86. Hilario E., Gogarten J.P. 1993. Horizontal transfer of ATPase genes: The tree of life becomes a net of life. Biosystems. 31, 111–119.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Tourova.

Additional information

Original Russian Text © T.P. Tourova, E.M. Spiridonova, 2009, published in Molekulyarnaya Biologiya, 2009, Vol. 43, No. 5, pp. 772–788.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tourova, T.P., Spiridonova, E.M. Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol Biol 43, 713–728 (2009). https://doi.org/10.1134/S0026893309050033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893309050033

Key words

Navigation