Skip to main content
Log in

Effect of prothymosin α and its mutants on the activity of the p53 tumor suppressor

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The nuclear oncoprotein prothymosin α (ProTα) was tested for the ability to regulate the p53 activity with the use of a reporter gene controlled by a p53-responsive promoter. Overexpression of the ProTα gene stimulated the p53 activity, while downregulation of the endogenous ProTα level via RNA interference suppressed transcription of the reporter gene. An increase in ProTα activated p53-dependent transcription and increased the intracellular p53 content in human HeLa, but not HCT116, cells. N-terminal deletions had almost no effect on the ability of ProTα to activate p53-dependent transcription, while deletions from the central region and C-terminal mutations distorting the active transport of ProTα into the cell nucleus prevented its transactivating effect. Mutations affecting Keap1 binding did not impair the ProTα ability to activate the p53-responsive reporter gene. Based on the results, stimulation of p53-dependent transcription was ascribed to the central acidic region of ProTα. The conclusion was supported by the fact that parathymosin, another protein containing an extended acidic region, was also capable of activating p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pineiro A., Cordero O., Nogueira M. 2000. Fifteen years of prothymosin α: Contradictory past and new horizons. Peptides. 21, 1433.

    Article  PubMed  CAS  Google Scholar 

  2. Vartapetian A.B., Uversky V.N. 2003. Prothymosin α: A simple yet mysterious protein. In: Protein Structures: Kaleidoscope of Structural Properties and Functions. Trivandrum, India: Research Signpost.

    Google Scholar 

  3. Letsas K.P., Frangou-Lazaridis M. 2006. Surfing on prothymosin α proliferation and anti-apoptotic properties. Neoplasma. 53, 92–96, 92–96.

    PubMed  CAS  Google Scholar 

  4. Orre R.S., Cotter M.A., Subramanian C., Robertson E.S. 2000. Prothymosin α functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. in vitro. J. Biol. Chem. 17, 1794–1799.

    Google Scholar 

  5. Evstafieva A.G., Belov G.A., Kalkum M., Chichkova N.V., Bogdanov A.A., Agol V.I., Vartapetian A.B. 2000. Prothymosin α fragmentation in apoptosis. FEBS Lett. 467, 150–154.

    Article  PubMed  CAS  Google Scholar 

  6. Evstafieva A.G., Belov G.A., Rubtsov Y.P., Kalkum M., Joseph B., Chichkova N.V., Sukhacheva E.A., Bogdanov A.A., Pettersson R.F., Agol V.I., Vartapetian A.B. 2003. Apoptosis-related fragmentation, translocation, and properties of human prothymosin α. Exp. Cell Res. 284, 211–223.

    Article  PubMed  CAS  Google Scholar 

  7. Jiang X., Kim H.E., Shu H., Zhao Y., Zhang H., Kofron J., Donnelly J., Burns D., Ng S.C., Rosenberg S., Wang X. 2003. Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science. 299, 223–226.

    Article  PubMed  CAS  Google Scholar 

  8. Karetsou Z., Kretsovali A., Murphy C., Tsolas O., Papamarcaki T. 2002. Prothymosin α interacts with the CREB-binding protein and potentiates transcription. EMBO Rep. 3, 361–366.

    Article  PubMed  CAS  Google Scholar 

  9. Subramanian C., Hasan S., Rowe M., Hottiger M., Orre R., Robertson E.S. 2002. Epstein-Barr virus nuclear antigen 3C and prothymosin α interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J. Virol. 76, 4699–4708.

    Article  PubMed  CAS  Google Scholar 

  10. Karapetian R.N., Evstafieva A.G., Abaeva I.S., Chichkova N.V., Filonov G.S., Rubtsov Y.P., Sukhacheva E.A., Melnikov S.V., Schneider U, Wanker E.E., Vartapetian A.B. 2005. Nuclear oncoprotein prothymosin α is a partner of Keap1: Implications for expression of oxidative stress-protecting genes. Mol. Cell Biol. 25, 1089–1099.

    Article  PubMed  CAS  Google Scholar 

  11. Harris S.L., Levine A.J. 2005. The p53 pathway: Positive and negative feedback loops. Oncogene. 24, 2899–2908.

    Article  PubMed  CAS  Google Scholar 

  12. Chumakov P.M. 2000. Function of p53 gene: A life-ordeath choice. Biokhimiya. 65, 34–47.

    Google Scholar 

  13. Inoue T., Wu L., Stuart J., Maki C.G. 2005. Control of p53 nuclear accumulation in stressed cells. FEBS Lett. 579, 4978–4984.

    Article  PubMed  CAS  Google Scholar 

  14. Scheffner M., Huibregtse J.M., Vierstra R.D., Howley P.M. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 75, 495–505.

    Article  PubMed  CAS  Google Scholar 

  15. Guryanova O.A., Makhanov M., Chenchik A.A., Chumakov P.M. 2006. Optimization of a genome-wide disordered lentivector-based short hairpin RNA library. Mol. Biol. 40, 448–459.

    Article  CAS  Google Scholar 

  16. Shakulov V.R., Vorobjov I.A., Rubtsov Yu.P., Chichkova N.V., Vartapetian A.B. 2000. Interaction of yeast importin with the NLS of prothymosin α is insufficient to trigger nuclear uptake of cargoes. Biochim. Biophys. Res. Commun. 274, 548–552.

    Article  CAS  Google Scholar 

  17. Sukhacheva E.A., Evstafieva A.G., Fateeva T.V., Shakulov V.R., Efimova N.A., Karapetian R.N., Rubtsov Y.P., Vartapetian A.B. 2002. Sensing prothymosin α origin, mutations and conformation with monoclonal antibodies. J. Immunol. Meth. 266, 185–196.

    Article  CAS  Google Scholar 

  18. Evstafieva A.G., Chichkova N.V., Makarova T.N., Vartapetian A.B., Vasilenko A.V., Abramov V.M., Bogdanov A.A. 1995. Overproduction in Escherichia coli, purification, and properties of human prothymosin α. Eur. J. Biochem. 231, 639–643.

    Article  PubMed  CAS  Google Scholar 

  19. Zav’yalov V.P., Navolotskaya E.V., Vasilenko R.N., Abramov V.M., Volodina E.Y, Roslovtseva O.A., Prusakov A.N., Kaurov O.A. 1995. The sequence 130–137 of human interferon-α2 is involved in the competition of interferon, prothymosin α and cholera toxin B subunit for common receptors on human fibroblasts. Mol. Immunol. 32, 425–431.

    Article  PubMed  CAS  Google Scholar 

  20. Barcia M.G., Castro J.M., Jullien C.D., Freire M. 1993. Prothymosin α is phosphorylated in proliferating stimulated cells. J. Biol. Chem. 268, 4704–4708.

    PubMed  CAS  Google Scholar 

  21. Trompeter H.I., Soling H.D. 1992. Cloning and characterization of a gene encoding the 11.5-kDa zinc-binding protein (parathymosin-α). FEBS Lett. 298, 245–248.

    Article  PubMed  CAS  Google Scholar 

  22. Papamarcaki T., Tsolas O. 1994. Prothymosin α binds to histone H1 in vitro. FEBS Lett. 345, 71–75.

    Article  PubMed  CAS  Google Scholar 

  23. Okamoto K, Isohashi F. 2005. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J. Biol. Chem. 280, 36986–36993.

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi T., Wang T., Maezawa M., Kobayashi M., Ohnishi S., Hatanaka K., Hige S., Shimizu Y., Kato M., Asaka M., Tanaka J., Imamura M., Hasegawa K., Tanaka Y., Brachmann R.K. 2006. Overexpression of the oncoprotein prothymosin α triggers a p53 response that involves p53 acetylation. Cancer Res. 66, 3137–3144.

    Article  PubMed  CAS  Google Scholar 

  25. Doorbar J. 2006. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. (London). 110, 525–541.

    CAS  Google Scholar 

  26. Wei Q. 2005. Pitx2a binds to human papillomavirus type 18 E6 protein and inhibits E6-mediated p53 degradation in HeLa cells. Biol. Chem. 280, 37790–37797.

    Article  CAS  Google Scholar 

  27. Gartel A.L., Tyner A.L. 2002. The role of the cyclindependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther. 1, 639–649.

    PubMed  CAS  Google Scholar 

  28. Roninson I.B. 2002. Oncogenic functions of tumor suppressor p21(Waf1/Cip1/Sdi1): Association with cell senescence and tumor-promoting activities of stromal fibroblasts. Cancer Lett. 179, 1–14.

    Article  PubMed  CAS  Google Scholar 

  29. Oren M. 2003. Decision making by p53: Life, death, and cancer. Cell Death Differ. 10, 431–442.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Evstafieva.

Additional information

Original Russian Text © N.I. Zakharova, V.V. Sokolov, V.V. Roudko, S.V. Melnikov, A.B. Vartapetian, A.G. Evstafieva, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 4, pp. 673–684.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharova, N.I., Sokolov, V.V., Roudko, V.V. et al. Effect of prothymosin α and its mutants on the activity of the p53 tumor suppressor. Mol Biol 42, 598–608 (2008). https://doi.org/10.1134/S002689330804016X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689330804016X

Key words

Navigation