Skip to main content
Log in

Isolation of a novel fructose-1,6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response of this gene to abiotic stresses

  • Genomics. Transcriptiomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A cDNA clone containing a fructose-1,6-bisphosphate aldolase (ALD) gene, designated ClAldC, was isolated from the medicinal plant Codonopsis lanceolata. ClAldC is predicted to encode a precursor protein of 358 amino acid residues and its sequence shares high degrees of homology with a number of other ALDs. The expression of ClAldC in different C. lanceolata organs was analyzed using reverse transcriptase (RT)-PCR. The results showed that ClAldC is highly expressed in the stems of an intact plant, while expressed at low level in leaves and roots. In addition, the expression of ClAldC under different abiotic stresses was analyzed at different points in time. Three tested abiotic stimuli, i.e., anoxygenic stress, hydrogen peroxide, and chilling, triggered a significant induction of ClAldC within 2–8 h post-treatment. However, there was no induction under the other four stresses, i.e., NaCl, wounding, light, and dark. The positive responses of ClAldC to the three abiotic stimuli suggested that C. lanceolata ClAldC may help to protect against environmental stresses such as anoxia, chilling and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rutter W.J. 1964. Evolution of aldolase. Fed. Proc. 23, 1248–1257.

    PubMed  CAS  Google Scholar 

  2. Flechner A., Gross W., Martin W.F., Schnarrenberger C. 1999. Chloroplast class I and II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. FEBS Lett. 447, 200–202.

    Article  PubMed  CAS  Google Scholar 

  3. Konishi H., Yamane H., Maeshima M., Komatsu S. 2004. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol. Biol. 56, 839–848.

    Article  PubMed  CAS  Google Scholar 

  4. Lal A., Plaxton W.C., Kayastha A.M. 2005. Purification and characterization of an allosteric fructose-1,6-bisphosphate aldolase from germinating mung beans (Vigna radiata). Phytochemistry. 66, 968–974.

    Article  PubMed  CAS  Google Scholar 

  5. Koonin E.V., Galperin M.Y. 2002. Carbohydrate metabolism. In: Sequence-Evolution-Function. Ed. Koonin E.V. N.Y.: Kluwer.

    Google Scholar 

  6. Lebherz H.G., Rutter W.J. 1969. Distribution of fructose diphosphate aldolase variants in biological systems. Biochemistry. 8, 109–121.

    Article  PubMed  CAS  Google Scholar 

  7. Zgiby S.M., Thomson G.J., Qamar S., Berry A. 2000. Exploring substrate binding and discrimination in fructose 1,6-bisphosphate and tagatose-1,6-bisphosphate aldolases. Eur. J. Biochem. 267, 1858–1868.

    Article  PubMed  CAS  Google Scholar 

  8. Buchanan B.B., Gruissem W., Jones R.L. 2005. Carbohydrate metabolism. In: Biochemistry and Molecular Biology of Plants. Eds. Buchanan B.B. et al. Rockville, MD, 630–675.

  9. Weeden N.F., Gottlieb L.D. 1980. The genetics of chloroplast enzymes. J. Hered. 71, 392–396.

    CAS  Google Scholar 

  10. Plaxton W.C. 1996. The organization and regulation of plant glycolysis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 185–214.

    Article  PubMed  CAS  Google Scholar 

  11. Han D.S. 1992. Saengyakhak. Seoul, Korea: Dongmyungsa, pp. 197–199.

    Google Scholar 

  12. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  13. Lebherz H.G., Leadbetter M.M., Bradshaw R.A. 1984. Isolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose bisphosphate aldolase. J. Biol. Chem. 259, 1011–1017.

    PubMed  CAS  Google Scholar 

  14. Kelley P.M., Freeling M. 1984. Anaerobic expression of maize fructose-1,6-diphosphate aldolase. J. Biol. Chem. 259, 14180–14183.

    PubMed  CAS  Google Scholar 

  15. Kelley P.M., Tolan D.R. 1986. The complete amino acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol. 82, 1076–1080.

    Article  PubMed  CAS  Google Scholar 

  16. Andrews D.L., MacAlpine D.M., Johnson J.R., Kelley P.M., Cobb B.G., Drew M.C. 1994. Differential induction of mRNAs for the glycolytic and ethanolic fermentative pathways by hypoxia and anoxia in maize seedlings. Plant Physiol. 106, 1575–1582.

    Article  PubMed  CAS  Google Scholar 

  17. Umeda M., Uchimiya H. 1994. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants (Oryza sativa L.) under submergence stress. Plant Physiol. 106, 1015–1022.

    PubMed  CAS  Google Scholar 

  18. Bucher M., Kuhlemeier C. 1993. Long term anoxia tolerance. Plant Physiol. 103, 441–448.

    Article  PubMed  CAS  Google Scholar 

  19. Minhas D., Grover A. 1999. Transcript levels of genes encoding various glycolytic and fermentation enzymes change in response to abiotic stresses. Plant Sci. 146, 41–51.

    Article  CAS  Google Scholar 

  20. Yamada S., Komori T., Hashimoto A., Kuwata S., Imaseki H., Kubo T. 2000. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci. 154, 61–69.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X.N., Wang H., Qu Z. C., Ye M.M., Shen D.L. 2002. Cloning and prokaryotic expression of a salt-induced cDNA encoding a chloroplastic fructose-1,6-diphosphate aldolase in Dunaliella salina (Chlorophyta). DNA Seq. 13, 195–202.

    PubMed  CAS  Google Scholar 

  22. Taylor W.C. 1989. Transcriptional regulation by a circadian rhythm. Plant Cell. 1, 259–264.

    Article  PubMed  CAS  Google Scholar 

  23. Kagaya Y., Nakamura H., Hiaka S., Ejiri S., Tsutsumi K. 1995. The promoter from the rice nuclear gene encoding chloroplast aldolase confers mesophyll-specific and light-regulated expression in transgenic tobacco. Mol. Gen. Genet. 248, 668–674.

    Article  PubMed  CAS  Google Scholar 

  24. Hayama R., Izawa T., Shimamoto K. 2002. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43, 494–504.

    Article  PubMed  CAS  Google Scholar 

  25. Michelis R., Gepstein S. 2000. Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast. Plant Mol. Biol. 44, 487–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 2, pp. 206–213.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purev, M., Kim, M.K., Samdan, N. et al. Isolation of a novel fructose-1,6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response of this gene to abiotic stresses. Mol Biol 42, 179–186 (2008). https://doi.org/10.1134/S0026893308020027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893308020027

Key words

Navigation