Skip to main content
Log in

Equilibrium unfolding of mutant apomyoglobins carrying substitutions of conserved nonfunctional residues with alanine

  • Structural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Protein aggregation or misfolding in the cell is connected with many genetic diseases and can result from substitutions in proteins. Substitutions can influence the protein stability and folding rates in both intermediate and native states. The equilibrium urea-induced unfolding was studied for mutant apomyoglobins carrying substitutions of the conserved nonfunctional residues Val10, Trp14, Ile111, Leu115, Met131, and Leu135 with Ala. Conformational transitions were monitored by intrinsic Trp fluorescence and far-UV circular dichroism. Free energy changes upon transition from the native to the intermediate state and from the intermediate to the unfolded state were determined. All substitutions considerably decreased the stability of native apomyoglobin, whereas the effect on the stability of the intermediate state was essentially smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto T., Bishop R.W., Brown M.S., Goldstein J.L., Russell D.W. 1986. Deletion in cysteine-rich region of LDL receptor impedes transport to cell surface in WHHL rabbit. Science. 232, 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  2. Yang Y., Raper S.E., Cohn J.A., Engelhardt J.F., Wilson J.M. 1993. An approach for treating the hepatobiliary disease of cystic fibrosis by somatic gene transfer. Proc. Natl. Acad. Sci. USA. 90, 4601–4605.

    Article  PubMed  CAS  Google Scholar 

  3. Lomas D.A., Evans D.L., Finch J.T., Carrell R.W. 1992. The mechanism of α1-antitrypsin accumulation in the liver. Nature. 357, 605–607.

    Article  PubMed  CAS  Google Scholar 

  4. Hobbs H.H., Russell D.W., Brown M.S., Goldstein J.L. 1990. The LDL receptor locus in familial hypercholesterolemia: Mutational analysis of a membrane protein. Annu. Rev. Genet. 24, 133–170.

    Article  PubMed  CAS  Google Scholar 

  5. Lau M.M., Neufeld E.F. 1989. A frameshift mutation in a patient with Tay-Sachs disease causes premature termination and defective intracellular transport of the α subunit of β-hexosaminidase. J. Biol. Chem. 264, 21,376–21,380.

    CAS  Google Scholar 

  6. Cho Y., Gorina S., Jeffrey P.D., Pavletich N.P. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science. 265, 346–355.

    Article  PubMed  CAS  Google Scholar 

  7. Clore G.M., Omichinski J.G., Sakaguchi K., Zambrano N., Sakamoto H., Appella E., Gronenborn A.M. 1994. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 265, 386–391.

    Article  PubMed  CAS  Google Scholar 

  8. Cavagnero S., Dyson H.J., Wright P.E. 1999. Effect of H-helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol. 285, 269–282.

    Article  PubMed  CAS  Google Scholar 

  9. Laurents D.V., Corrales S., Elias-Arnanz M., Sevilla P., Rico M., Padmanabhan S. 2000. Folding kinetics of phage 434 Cro protein. Biochemistry. 39, 13,963–13,973.

    Article  CAS  Google Scholar 

  10. Tang K.S, Guralnick B.J., Wang W.K., Fersht A.R., Itzhaki L.S. 1999. Stability and folding of the tumor suppressor protein p16. J. Mol. Biol. 285, 1869–1886.

    Article  PubMed  CAS  Google Scholar 

  11. Parker M.J., Dempsey C.E, Lorch M., Clarke A.R. 1997. Acquisition of native β-strand topology during the rapid collapse phase of protein folding. Biochemistry. 36, 13,396–13,405.

    CAS  Google Scholar 

  12. Burns L.L., Dalessio P.M., Ropson I.J. 1998. Folding mechanism of three structurally similar β-sheet proteins. Proteins. 33, 107–118.

    Article  PubMed  CAS  Google Scholar 

  13. Schreiber G., Fersht A.R. 1993. The refolding of cis-and trans-peptidylprolyl isomers of barstar. Biochemistry. 32, 11,195–11,203.

    CAS  Google Scholar 

  14. Munoz V., Lopez E.M., Jager M., Serrano L. 1994. Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. Kinetic analysis of the inverse hydrophobic effect. Biochemistry. 33, 5858–5866.

    Article  PubMed  CAS  Google Scholar 

  15. Parker M.J., Marqusee S. 1999. The cooperativity of burst phase reactions explored. J. Mol. Biol. 293, 1195–1210.

    Article  PubMed  CAS  Google Scholar 

  16. Kim P.S., Baldwin R.L. 1990. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–666.

    Article  PubMed  CAS  Google Scholar 

  17. Clarke A., Walto J.P. 1997. Protein folding pathways and intermediates. Curr. Opin. Biotechnol. 8, 400–410.

    Article  PubMed  CAS  Google Scholar 

  18. Roder H., Colon W. 1997. Kinetic role of early intermediates in protein folding. Curr. Opin. Struct. Biol. 7, 15–28.

    Article  PubMed  CAS  Google Scholar 

  19. Ptitsyn O.B., Ting K.-L.H. 1999. Non-functional conserved residues in globins and their possible role as a folding nucleus. J. Mol. Biol. 291, 671–677.

    Article  PubMed  CAS  Google Scholar 

  20. Jennings P.A., Wright P.E. 1993. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 262, 892–896.

    Article  PubMed  CAS  Google Scholar 

  21. Hughson F.M., Wright P.E., Baldwin R.L. 1990. Structural characterization of a partly folded apomyoglobin intermediate. Science. 249, 1544–1548.

    Article  PubMed  CAS  Google Scholar 

  22. Jennings P.A., Stone M.J., Wright P.E. 1995. Overexpression of myoglobin and assignment of the amide, Cα, and Cβ resonances. J. Biomol. NMR. 6, 271–276.

    Article  PubMed  CAS  Google Scholar 

  23. Harrison S.C., Blout E.R. 1965. Reversible conformational changes of myoglobin and apomyoglobin. J. Biol. Chem. 61, 623–627.

    Google Scholar 

  24. Jaenicke L. 1974. A rapid micromethod for the determination of nitrogen and phosphate in biological material. Anal. Biochem. 61, 623–627.

    Article  PubMed  CAS  Google Scholar 

  25. Baryshnikova E.N., Sharapov M.G., Kashparov I.A., Ilyina N.B., Bychkova V.E. 2005. Apomyoglobin stability as dependent on urea concentration and temperature at two pH values. Mol. Biol. 39, 292–297.

    Article  CAS  Google Scholar 

  26. Baryshnikova E.N., Melnik B.S., Semisotnov G.V., Bychkova V.E. 2005. Folding/unfolding kinetics of apomyoglobin. Mol. Biol. 39, 1008–1016.

    CAS  Google Scholar 

  27. Tanford C. 1968. Protein denaturation. Part B: The transition from native to denatured state. Adv. Protein Chem. 23, 218–275.

    Google Scholar 

  28. Pace C.N. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 131, 266–280.

    Article  PubMed  CAS  Google Scholar 

  29. Baryshnikova E.N., Melnik B.S., Finkelstein A.V., Semisotnov G.V., Bychkova V.E. 2005. Three-state protein folding: Experimental determination of free-energy profile. Protein Sci. 14, 2658–2667.

    Article  PubMed  CAS  Google Scholar 

  30. Hargrove M.S., Krzywda S., Wilkinson A.J., Dou Y., Ikeda-Saito M., Olson J.S. 1994. Stability of myoglobin: A model for the folding of heme proteins. Biochemistry. 33, 11,767–11,775.

    Article  CAS  Google Scholar 

  31. Hughson F.M., Baldwin R.L. 1989. Use of site-directed mutagenesis to destabilize native apomyoglobin relative to folding intermediates. Biochemistry. 28, 4415–4422.

    Article  PubMed  CAS  Google Scholar 

  32. Myers J.K., Pace C.N., Scholtz J.M. 1995. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148.

    Article  PubMed  CAS  Google Scholar 

  33. Chen Y., Barkley M.D. 1998. Toward understanding tryptophan fluorescence in proteins. Biochemistry. 37, 9976–9982.

    Article  PubMed  CAS  Google Scholar 

  34. Nishimura Ch., Dyson H.J., Wright P.E. 2006. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin. J. Mol. Biol. 355, 139–156.

    Article  PubMed  CAS  Google Scholar 

  35. Hughson F.M., Barrick D., Baldwin R.L. 1991. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry. 30, 4113–4118.

    Article  PubMed  CAS  Google Scholar 

  36. Bertagna A.M., Barrick D. 2004. Nonspecific hydrophobic interactions stabilize an equilibrium intermediate of apomyoglobin at a key position within the AGH region. Proc. Natl. Acad. Sci. USA. 101, 12,514–12,519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. N. Baryshnikova or V. E. Bychkova.

Additional information

Original Russian Text © E.N. Baryshnikova, V.A. Balobanov, N.S. Katina, B.S. Melnik, D.A. Dolgikh, G.V. Semisotnov, V.E. Bychkova, 2007, published in Molekulyarnaya Biologiya, 2007, Vol. 41, No. 4, pp. 674–680.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshnikova, E.N., Balobanov, V.A., Katina, N.S. et al. Equilibrium unfolding of mutant apomyoglobins carrying substitutions of conserved nonfunctional residues with alanine. Mol Biol 41, 609–615 (2007). https://doi.org/10.1134/S0026893307040139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893307040139

Key words

Navigation