Skip to main content
Log in

Determination of concentration and aggregate size in influenza virus preparations from true UV absorption spectra

  • Miscellaneous
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Light scattering is known to make a considerable contribution to ultraviolet absorption spectra of influenza virus (Flu) preparations. We applied extrapolation to analysis of this contribution. Ultraviolet spectra were recorded and true extinction coefficients (A 0.1%1 cm, 280 ) were determined in suspensions of intact virions of Flu strain Puerto Rico/8/34 and subviral particles obtained by bromelain digestion of the same strain (1.26 ± 0.17 and 0.96 ± 0.11 OD, respectively). This allowed simple and rapid measurement of virus concentration. It was shown that UV spectra allowed efficient monitoring of virion aggregation. The pH dependence of aggregation properties of influenza subviral particles was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gill S.C., von Hippel P.H. 1989. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326.

    Article  CAS  PubMed  Google Scholar 

  2. Tikchonenko T.I., Dobrov E.N., Velikodvorskaya G.A., Kisseleva N.P. 1966. Peculiarities of the secondary structure of phage DNA in situ. J. Mol. Biol. 18, 58–67.

    CAS  PubMed  Google Scholar 

  3. Yokote Y., Arai K.M., Akahane K. 1986. Recovery of tryptophan from 25-minute acid hydrolysates of protein. Anal. Biochem. 152, 245–249.

    Article  CAS  PubMed  Google Scholar 

  4. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  5. Peterson G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356.

    Article  CAS  PubMed  Google Scholar 

  6. Brand C.M., Skehel J.J. 1972. Crystalline antigen from the influenza virus envelope. Nature New. Biol. 238, 145–147.

    CAS  PubMed  Google Scholar 

  7. Chu B. 1970. Laser light scattering. Ann. Rev. Phys. Chem. 21, 145–174.

    Article  CAS  Google Scholar 

  8. Kulburn E.D. 1978. Influenza Viruses and Influenza [Russian translation]. Moscow: Meditsina.

    Google Scholar 

  9. Camerini-Otero R.D., Franklin R.M., Day L.A. 1974. Molecular weights, dispersion of refractive index increments, and dimensions from transmittance spectrophotometry. Bacteriophages R17, T7, and PM2, and tobacco mosaic virus. Biochemistry. 13, 3763–3773.

    CAS  PubMed  Google Scholar 

  10. Camerini-Otero R.D., Day L.A. 1978. The wavelength dependence of the turbidity of solutions of macromolecules. Biopolymers. 17, 2241–2249.

    Article  CAS  Google Scholar 

  11. Kharitonenkov I.G., Siniakov M.S., Grigoriev V.B., Arefiev I.M., Eskov A.P., Klimontovich A.V. 1978. The length of the influenza virus spikes measured by photon correlation spectroscopy. FEBS Lett. 96, 120–124.

    Article  CAS  PubMed  Google Scholar 

  12. Wilson I.A., Skehel J.J., Wiley D.C. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature. 289, 366–373.

    CAS  PubMed  Google Scholar 

  13. Ksenofontov A.L., Zhirnov O.P., Danilov A.V., Baratova L.A. 1995. Studies on surface localization of amino acids in the influenza hemagglutinin upon functional transformation of virions by acid pH. Mol. Biol. 29, 635–644.

    CAS  Google Scholar 

  14. Carr C.M., Kim P.S. 1993. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 73, 823–832.

    Article  CAS  PubMed  Google Scholar 

  15. Skehel J.J., Wiley D.C. 2000. Receptor binding and membrane fusion in virus entry: The influenza hemaglutinin. Annu. Rev. Biochem. 69, 531–569.

    Article  CAS  PubMed  Google Scholar 

  16. LeDuc D.L., Shin Y.K. 2000. Insights into a structure-based mechanism of viral membrane fusion. Biosci. Rep. 20, 557–570.

    Article  CAS  PubMed  Google Scholar 

  17. Sato S.B., Kawasaki K., Ohnishi S. 1983. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc. Natl. Acad. Sci. USA. 80, 3153–3157.

    CAS  PubMed  Google Scholar 

  18. Junankar P.R., Cherry R.J. 1986. Temperature and pH dependence of the haemolytic activity of influenza virus and of the rotational mobility of the spike glycoproteins. Biochim. Biophys. Acta. 854, 198–206.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.L. Ksenofontov, V.S. Kozlovskii, L.V. Kordyukova, V.A. Radyukhin, A.V. Timofeeva, E.N. Dobrov, 2006, published in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 1, pp. 172–179.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksenofontov, A.L., Kozlovskii, V.S., Kordyukova, L.V. et al. Determination of concentration and aggregate size in influenza virus preparations from true UV absorption spectra. Mol Biol 40, 152–158 (2006). https://doi.org/10.1134/S0026893306010201

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893306010201

Key words

Navigation