Skip to main content
Log in

Compatible Solutes Accumulated by Glutamicibacter sp. Strain SMB32 in Response to Abiotic Environmental Factors

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Proton magnetic resonance spectroscopy was used for investigation of the pool of compatible solutes accumulated in the cells of Glutamicibacter sp. strain SMB32 in response to abiotic environmental factors. The original habitat of the strain was anthropogenically salinated soil at the Verkhnekamsk deposit of potassium and magnesium salts (Perm krai, Russia). The strain grew within the temperature range from 5 to 35°C. At 5 and 32°C, the intracellular content of trehalose in the cells of Glutamicibacter sp. SMB32 was significantly higher than at 25°C. Glutamicibacter sp. SMB32 was able to grow both in the absence of NaCl and at its concentrations up to 11%. Glutamate predominated in the cells grown without NaCl. At high salinity (8% NaCl), predominant compounds in the studied strain cells were trehalose, proline, glutamine, and glutamate. Increasing salinity of the growth medium resulted in higher levels of intracellular proline. This is the first report of ability of a Glutamicibacter strain to synthesize mannitol; its accumulation was found to depend on the aeration mode. Thus, Glutamicibacter sp. strain SMB32 possesses high metabolic plasticity and is able to adapt to the action of unfavorable physicochemical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Anan’ina, L.N., Kosheleva, I.A., and Plotnikova, E.G., Bacterial consortium as a model for studying the response of the microbial community of the Verkhnekamsk salt mining region to combined pollution, Teor. Prikl. Ekol., 2022, no. 2, pp. 116‒123.

  2. Bernard, T., Jebbar, M., Rassouli, Y., Himdi-Kabbab, S., Hamelin, J., and Blanco, C., Ectoine accumulation and osmotic regulation in Brevibacterium linens, J. Gen. Microb-iol., 1993, vol. 139, pp. 129‒136.

    Article  CAS  Google Scholar 

  3. Brill, J., Hoffmann, T., Bleisteiner, M., and Bremer, E., Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity, J. Bacteriol., 2011, vol. 193, pp. 5335‒5346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Busse, H.-J., Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus, Int. J. Syst. Evol. Microbiol., 2016, vol. 66, pp. 9‒37.

    Article  CAS  PubMed  Google Scholar 

  5. Busse, H.-J., Wieser, M., and Buczolits, S., Genus Arthrobacter, in Bergey’s Manual of Systematics of Archaea and Bacteria, Wiley, 2012, pp. 1–71. https://doi.org/10.1002/9781118960608.gbm00118

  6. Cavicchioli, R., On the concept of a psychrophile, ISME J., 2016, vol. 10, pp. 793–795.

    Article  PubMed  Google Scholar 

  7. Chen, X.-M., Jiang, Y., Li, Y.-T., Zhang, H.-H., Li, J., Chen, X., Zhao, Q., Zhao, J., Si, J., Lin, Z.-W., Zhang, H., Dyson, P., and An, L.-Z., Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3, Extremophiles, 2011, vol. 15, pp. 499–508.

    Article  CAS  PubMed  Google Scholar 

  8. Dmitrieva, O.A., Fedotova, M.V., and Buchner, R., Evidence for cooperative Na+ and Cl binding by strongly hydrated L-proline, Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 20 474‒20 483.

    Article  Google Scholar 

  9. Feng, W.-W., Wang, T.-T., Bai, J.-L., Ding, P., Xing, K., Jiang, J.-H., Peng, X., and Qin, S., Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense, Int. J. Syst. Evol. Microbiol., 2017, vol. 67, pp. 1120–1125.

    Article  PubMed  Google Scholar 

  10. Friesen, S., Fedotova, M.V., Kruchinin, S.E., and Buchner, R., Hydration and dynamics of l-glutamate ion in aqueous solution, Phys. Chem. Chem. Phys., 2021, vol. 23, pp. 1590‒1600.

    Article  CAS  PubMed  Google Scholar 

  11. Galinski, E.A., Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection, Experientia, 1993, vol. 49, pp. 487–496.

    Article  CAS  Google Scholar 

  12. Gerhardt, P., Manual of Methods for General Bacteriology, Washington, DC: Amer. Soc. Microbiol., 1981.

    Google Scholar 

  13. Hasegawa, S., Uematsu, K., Natsuma, Y., Suda, M., Hiraga, K., Jojima, T., Inui, M., and Yukawa, H., Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions, Appl. Environ. Microbiol., 2012, vol. 78, p. 865e875.

  14. Hoch, J.C., Baskaran, K., Burr, H., Chin, J., Eghbalnia, H.R., Fujiwara, T., Gryk, M.R., Iwata, T., Kojima, C., Kurisu, G., Maziuk, D., Miyanoiri, Y., Wedell, J.R., Wilburn, C., Yao, H., and Yokochi, M., Biological magnetic resonance data bank, Nucleic Acids Res., 2023, vol. 51, D1, pp. D368–D376.

    Article  CAS  PubMed  Google Scholar 

  15. Jeong, J.-A., Park, S.W., Yoon, D., Kim, S., Kang, H.-Y., and Oh, J.-I., Roles of alanine dehydrogenase and induction of its gene in Mycobacterium smegmatis under respiration-inhibitory conditions, J. Bacteriol., 2018, vol. 200, p. e00152-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalabin, G.A., Kanitkaya, L.V., and Kushnarev, D.F., Kolichestvennaya spektroskopiya YaMR prirodnogo organicheskogo syr’ya i produktov ego pererabotki (Quantitative NMR Spectroscopy of Natural Orgaic Materials and Products of their Transformation), Moscow: Khimiya, 2000.

  17. Komarova, T.I., Koronelli, T.V., and Timokhina, E.A., The role of low-molecular-weight nitrogen compounds in the osmotolerance of Rhodococcus erythropolis and Arthrobacter globiformis, Microbiology (Moscow), 2002, vol. 71, pp. 139–142.

    Article  CAS  Google Scholar 

  18. Kumar, N. and Roy, J.I., Effect of trehalose on protein structure, Protein Sci., 2009, vol. 18, pp. 24–36.

    Google Scholar 

  19. Matveeva, N.I., Voronina, N.A., Borzenkov, I.A., Plakunov, V.K., and Belyaev, S.S., Composition and content of osmoprotectants in oil-oxidizing bacteria grown under different cultivation conditions, Microbiology (Moscow), 1997, vol. 66, pp. 32‒37.

    Google Scholar 

  20. Nagata, S., Adachi, K., and Sano, H., NMR analyses of compatible solutes in a halotolerant Brevibacterium sp., Microbiology (SGM), 1996, vol. 142, pp. 3355–3362.

    Article  CAS  Google Scholar 

  21. Narváez-Reinaldo, J.J., Barba, I., González-López, J., Tunnacliffe, A., and Manzanera, M., Rapid method for isolation of desiccation-tolerant strains and xeroprotectants, Appl. Environ. Microbiol., 2010, vol. 76, pp. 5254–5262.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nazarov, A.V., Anan’ina, L.N., Gorbunov, A.A., and Pyankova, A.A., Bacteria producing ectoine in the rhizosphere of plants growing on technogenic saline soil, Euras. Soil Sci., 2022, vol. 55. № 8, pp. 1074‒1081.

    Article  CAS  Google Scholar 

  23. Nishu, S.D., Hyun, H.R., and Lee, T.K., Complete genome sequence of drought tolerant plant growth-promoting rhizobacterium Glutamicibacter halophytocola DR408, Korean J. Microbiol., 2019, vol. 55, pp. 300‒302.

    Google Scholar 

  24. Qin, S., Feng, W.-W., Zhang, Y.-J., Wang, T.-T., Xiong, Y.-W., and Xing, K., Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180, A-ppl. Environ. Microbiol., 2018, vol. 84, p. e01533–18.

    CAS  Google Scholar 

  25. Raymond, R.L., Microbial oxidation of n-paraffinic hydrocarbons, Develop. Ind. Microbiol., 1961, vol. 2, pp. 23–32.

    CAS  Google Scholar 

  26. Santos, R.G., Hurtado, R., Gomes, L.G.R., Profeta, R., Rificie, C., Attilif, A.R., Spier, S.J., Mazzullo, G., Morais-Rodrigues, F., Gomide, A.C.P., Brenig, B., Gala-Garciaa, A., Cuteri, V., de Paula Castro, T.L., Ghosh, P., et al., Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter, Gene, 2020, vol. 741, p. 144566.

    Article  CAS  PubMed  Google Scholar 

  27. Singh, R.N., Gaba, S., Yadav, A.N., Gaur, P., Gulati, S., Kaushik, R., and Saxena, A.K., First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77, Stand. Genomic Sci., 2016, vol. 11, p. 54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tritsch, G.L. and Moore, G.E., Spontaneous decomposition of glutamine in cell culture media, Exp. Cell Res., 1962, vol. 28, pp. 360‒364.

    Article  CAS  PubMed  Google Scholar 

  29. Vasilets, E.A., Conditions of soil freezing in the Perm krai, Geograficheskoe izuchenie territorial’nykh sistem (Geographic Study of Territorial Systems) (Proc. 15th All-Russian Sci.-Pract. Conf. Stud., Aspir. Young Scientists), Safaryan, A.A., Ed., Perm: Perm Gos. Univ., 2021, pp. 153–157.

  30. Wang, H.-F., Li, L., Zhang, Y.-G., and Hozzein, W.N., Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 2154–2160.

    Article  CAS  PubMed  Google Scholar 

  31. Wise, W.S., The measurement of the aeration of culture media, J. Gen. Microbiol., 1951, vol. 5, pp. 167‒177.

    Article  CAS  PubMed  Google Scholar 

  32. Yamazaki, T., Eyama, S., and Takatsu, A., Concentration measurement of amino acid in aqueous solution by quantitative 1H NMR spectroscopy with iInternal standard method, Anal. Sci., 2017, vol. 33, pp. 369‒373.

    Article  CAS  PubMed  Google Scholar 

  33. Yasid, N.A., Rolfe, M.D., Green, J., and Williamson, M.P., Homeostasis of metabolites in Escherichia coli on transition from anaerobic to aerobic conditions and the transient secretion of pyruvate, Royal Soc. Open Sci., 2016, vol. 3, p. rsos.160187.

  34. Yastrebova, O.V., Malysheva, A.A., and Plotnikova, E.G., Halotolerant terephthalic acid-degrading bacteria of the genus Glutamicibacter, Appl. Biochem. Microbiol., 2022, vol. 58, pp. 590–597.

    Article  CAS  Google Scholar 

  35. Zevenhuizen, L.P., Levels of trehalose and glycogen in Arthrobacter globiformis under conditions of nutrient starvation and osmotic stress, Antonie van Leeuwenhoek, 1992, vol. 61, pp. 61‒68.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, Y., Han, L.-R., He, H.-W., Sang, B., Yu, D.-L., Feng, J.-T., and Zhang, X., Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient, Molecules, 2018, vol. 23, p. 125.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was carried out within the framework of the State Assignment АААА-А19-119112290008-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Anan’ina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anan’ina, L.N., Gorbunov, A.A., Shestakova, E.A. et al. Compatible Solutes Accumulated by Glutamicibacter sp. Strain SMB32 in Response to Abiotic Environmental Factors. Microbiology 92, 650–657 (2023). https://doi.org/10.1134/S0026261723601677

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261723601677

Keywords:

Navigation